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Abstract
roa

We-presentsaxioms to represent some simple concepts in temporal reasoning: events
occuring at points in time, facts holding true over time, events causing facts to begin, facts
causing contradictory facts to cease, and facts tending to remain true unless explicitly forced
to cease. To express this last notlon:;v:! czﬁc;"trh‘e axioms in a default logic: ’:ve altematwely
consider the logics of McDermott and Doyle [19}01' Reltexq23]" and of Mchhy [12,13)* Wr{/ g
define precisely (through a computer program and its formal description) the conclusions

—we :nt:r;d Ib}e drawn from these axioms, given a particular temporal state of affairs. We 7 7
prove, however, that these conclusions are not the deductions licensed by any of the above
default logics. Further analysis leads us to the conclusion that these logics are inherently
incapable of representing this particular kind of default reasoning.
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1 Introduction

It has long been recognized that reasoning under conditions of incomplete information is
an important part of human cognition. In medical diagnosis, the observed (observable)
symptoms rarely allow one to infer the disease; many details are omitted in a story, yet
readers are able to supply the missing facts in understanding it. Problem solvers are rarely
told that they know all facts relevant to the problem; they have to jump to that conclusion

themselves.

Reasoning of this sort often involves “jumping to conclusions”: holding a particular belief
based on knowledge that a certain state of affairs is typscally the case, and on lack of reason
to believe that the observed case is atypical. An overused example of such default reasoning
says that given my belief that birds typically fly, and that Tweety is a bird, and lacking any
direct evidence that Tweety cannot fly, I should jump to the conclusion that Tweety can
indeed fly. ] may later have to retract that conclusion if somebody tells me that Tweety
has a broken wing, is an ostrich, is dead, or has any other condition that might prevent him

from flying.

Several formal systems have been proposed to represent explicitly this process of default
reasoning. Generally they involve the attempt to formalize the notion of “lacking evidence
to the contrary”, and are usually referred to as “default”, or “nonmonotonic” logics. (Non-
monotonicity refers to the property of these logics that a wif may cease to b? entailed by a
theory as a result of adding additional axioms to it.} We will consider three of these sys-
tems: the nonmonotonic logic of McDermott and Doyle [19] and McDermott [15] (hereafter

NML), Reiter’s default logic [23] (hereafter DL), and McCarthy’s circumscription {12,13].
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Also see Moore [21].

All of these systems have been subjected to mathematical scrutiny (most notably by
Davis [2]), and have been shown to produce anomalous results in some cases. But the
examples that break these logics always seem to have an artificial, or even perverse, nature
to them. Davis’s demonstration that circumscription is not complete rests on an example
and technica! result from number theory, and the example of a NML theory that has no
fixed point involves a default rule expressing “if it’s consistent to believe that Tweety can
fly, then conclude that Tweety cannot fly.> On the other hand, the papers in which the
logics are introduced ([12,19,23]) use examples that are simple to the point of being of

pedagogical but not of practical interest.

So while the negative results may convince us that the systems don’t work in all cases,
and the positive examples may convince us that they do work in certain very simple cases,
we're left wondering about what might happen if we expressed in these logics a practical,
reasonably complex problem involving default reasoning. Exactly what conclusions would
or would not be licensed by these logics as applied to a practical problem? There are
precious few eflorts toward answering questions such as these, though a notable exception
is the work of Etherington and Reiter [7,8] in formalizing in a default logic a system of

inheritence hierarchies with defaults.

Our work begins with a practical problem: representing some simple concepts in temporal
reasoning. We develop axioms for expressing the notion of events happening in time and
facts holding true over time intervals, and in doing so recognize the need for jumping to

certain conclusions. Thus we express our axioms alternatively in the three logics noted

above.
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We have a clear idea of what we sntend to express through these axioms (s.c. what
deductions should be licensed by the logics), and provide a computer program that formally
expresses our intentions. The question, then, is which (if any) of the logics permit exactly
the deductions corresponding to the conclusions drawn by the program. The result is
negative: none of the logics correctly mirror the program. We examine in some detail the
reasons for this failure, trying to ascertain what properties of the problem domain cannot
be represented by these nonmonotonic logics, and conclude that all three nonmonotonic
logics are inherently incapable of representing the sort of default inference necessary for

temporal reasoning.

1.1 Notation

For logical formulas we will use a LISP-like notation. To signify application of a predicate
p to an individual x we will write (p x), and we will use names of logical connectives instead

of the usual symbols, for example:

(and (p x) (not (q y})).

We use “if” to mean implication and “iff” to mean bidirectional implication. Syntactic

individuals (constant symbols) we will write in capital letters. Variable, predicate, and
function names will appear in lower-case letters, but variable names may begin with a
question mark; formulas are implicitly quantified universally over all those variables whose
names begin with a question mark. Functions will be written in “usual” functional notation
(e.g. (X)) to distinguish them from predicates. So we might write

(iff (married 7x 7y)
(and (= ’x spouse(?y))
(= ?y spouse(?x))))

. T S T T RIETCIAE R E e e T e . B T P . Gt AT e et et et
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instead of the more conventional

Vz y(Married 2y «— z=spousey A y = spouse z).

Throughout the paper we’ll need to make clear the distinction between syntactic and
semantic objects, and between object- and meta-language statements, and we will use
typefaces to do so. Generally an italicized sans-serif font will signify a formula in the
object language—(composer BEETHOVEN ), for example. Semantic individuals and re-
lations will appear in a typewriter-like font, so we might say about a particular model
that BEETEOVEN € composer. Meta-linguistic objects, like sets of formulas or names for
(default-logic) extensions, we will set in bold-faced type (e.g. W may stand for a set of

wils).
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2 Formal Systems for Default Reasoning: Semantics and

Entailment

To motivate our discussion of the default reasoning systems, we should first give a quick
characterization of the temporal domain we set out to represent, explaining how default
inference creeps in. and how to represent it in the above default logics. We basically want
to reason about events happening at points in time, and about facts holding true over

intervals of time. We will be using a point-based temporal logic in the style of McDermott

[16]. (This just means that we assume in this paper that events will occur at a time point L
(instant), and that time intervals will be defined in terms of its begin and end points. Points

may be ordered in time: two points can happen at the same time, or one may occur before

the other.) : '

There are four things we particularly want to express:

1. That an event can happen at an instant in time. This might correspond to Hipping R
on a light switch, for example. S

2. That given the proper justification, the belief that an particular event has occured
may cause us to begin believing a particular fact. (Flipping a light switch may cause
a light to become and remain lit, if some preconditions, like the bulb not being burned
out, are met.)

3. We stop believing facts when faced with contrary evidence (contradictory facts). If ~—
at some later time | come to believe that the same light is unlit (perbaps because I've
flipped the switch off) I will believe that the fact that the light is lit has ceased to be R
true. This is the case of a fact clipping another fact. S

4. Facts tend to endure over time, unless we have reason to believe otherwise. Now that
I believe that the light is unlit I will believe it remains unlit, until 1 get evidence to .
the contrary. (This is a simplification of McDermott’s [16] notion of persistence). '

Figure 1 is a graphical representation of the events and facts expressed above. It shows R




} Evr-1 -- (FLIP swITCH ON)

FACT-1 -- (LIT BULB$§FITCB))

} Evr-2 -- (FLIP swITCH OFF)

FACT-2 -- (NOT (LIT BULB(SWITCH)))

Figure 1: Simple events, persistence, and clipping

a switch being flipped ON (an event), which causes a bulb to be lit (a fact). Some time
later (farther right in the picture) another event occurs—the switch is flipped to the OFF
position—causing a fact asserting that the bulb is not lit. This second fact clips the first,
and the NOT LIT fact persists indefinitely (as represented by the right arrow). Horizontal
position on the page indicates position in time: EVT-1 and the beginning of FACT-1 happen
simultaneously, the end of FACT-1 happens after the beginning of FACT-1 but before EVT-2,

and the end of FACT-2 occurs arbitrarily far in the future.

Note that a couple of things have been left implicit: that flipping a switch ON causes
the corresponding light to be lit (a statement about causality), that flipping a switch OFF
causes the corresponding light to be unlit, and that a bulb can’t both be lit and unlit at the
same time (a statement about contradiction). Our logic will have to offer a way for us to

make these assertions explicit. But for the moment we want only to introduce the graphic




representation of time, and to give a quick introduction to the sorts of things we want to

express in the logic.

The notion of facts enduring over time—which we’ll sometimes call perssstence—is the
problematic one. The words “lacking evidence to the contrary” imply a default inference.
And the default inference is exactly this: for any fact £, conclude that it’s not clipped unless
there’s specific evidence that it ss. More formally, if clipped is a predicate in our logic and f
is a fact, we want to believe (not (clipped )) by default. We now look at how to express this
notion in the three default logics, and where the problems with semantics and entailment

arise.

2.1 McDermott’s nonmonotonic logic

-
-
-
|4

The nonmonotonic logic of McDermott and Doyle {19] and McDermott [15] is first of all a

v’ -"nr

syntactic extension to the first-order predicate calculus. That is, they extend the language

“r 3,3
N

of FOPC to include a modal operator M, that is supposed to mirror the potion of provability
within the logic. That is, (M P) should be a theorem just in case it’s “consistent to believe

P”, which might be more formally expressed as a rule of inference:

i (not P) =+ (M P).

(“From the inability to deduce {not P} conclude (M P).”) The problem is that this definition
is directly circular: a system’s rules of inference themselves define what’s derivable in the

system, so the notion of derivability can’t be used to define an inference rule.

Instead, nonmonotonic derivability is defined in terms of fixed points of the operator
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NM, defined as follows:
NMA(S)=Th( AU A2, (S))

where A is a theory in a first-order language £ extended with the operator M, Th is
(monotonic) deductive closure, and As, can be thought of as the set of assumptions that

can be “jumped to” from a set of formulas S:
Asp(S)={(Mq):q€ L, and (not q) € S} — Th(A).

The set of theorems (nonmonotonically) derivable from A is then defined as the sntersection

of all fixed points of the N M operator:
N {S: NMA(S) = S},

or the entire language [ if there is no fixed point.

In general it’s not possible to determine how many fixed points & particular theory A
will have. The desirable case would be a guarantee that A has exactly one fixed point,
especially since the proof procedure provided in McDermott and Doyle {19] and in Doyle
[4] answers the question of whether a formuls is in all fixed points. Thus if a theory has
several fixed points, and each in some way describes a separate state of affairs, the proof

procedure is of no use to the reasoner trying to maintain a coberent view of the world.

One situation in which the multiple fixed point problem arises is when the theory contains
“conflicting default rules”. We won’t bother attempting a formal characterization of such

theories, but the classic example is the following:
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; all Quakers are pacifists, unless there’s reason to believe
; otherwise
(if (and (quaker ?x) (M (pacifist ?x)))

(pacifist 7x))

; all Republicans are non-pacifists, unless there’s reason to
; believe otherwise

(if (and (republican ?x) (M (not (pacifist 7x))))
(not (pacifist ?x))))
; Nixon is both a Quaker and a Republican

{quaker NIXON)
(republican NIXON)

This theory has two fixed points:

(1) (2)
{quaker NIXON) (quaker NIXON)
(republican NIXON) (republican NIXON)
(pacifist NIXON) (not (pacifist NIXON))
{not (M (not (pacifist NIXON)))) (M (not (pacifist NIXON)))
(M (pacifist NIXON)) (not (M (pacifist NIXON)))

We have conflicting defaults in that one predicate (quaker) applied to an individual leads
us to jump to a particular conclusion about that individual, and a second predicate applied
to an individual (republican) licenses a contradictory conclusion. We get multiple fixed
points if there is some individual for whom both predicates bold. Both fixed points describe
a particular state of the world, each consistent within itself, but incompatible with the
other fixed point. Notice the problem with using a proof procedure that decides whether a
particular formula (e.g. (pacifist NIXON)) is in all fixed points. It would answer “no”, but
would offer the same verdict for that formula’s negation. Clearly we would like to adopt

one fixed point and “stick with it”, but there's certainly nothing in the logic that should

cause us to favor one or the other.

............................
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We should note at the outset that the problem of multiple fixed points is mainly a
computational one. Different fixed points for a theory often represent different plausible
and incomparable states of the world, but states that are all consistent with the default R
rules. (Such is the case with the “Nixon” example, but later in the paper we will see
another theory in which one fixed point describes a world state that is counterintuitive).

It’s clear however, that the whether this logic is of practical value depends on whether we
can identify a unique fixed point for a particular theory (or at least verify that all fixed
points have certain desired properties). If we have just one, the proof procedure works just
right (it marks as ponmonotonically derivable exactly those formulas in the unique fixed

point). If not, the proof procedure may tell us nothing of value.

2.2 Reiter’s default logic

While Reiter’s [23] default logic (hereafter “DL”) looks much like the one we just discussed,
those similarities are fairly superficial. The first thing to note about DL is that it enforces a
strong distinction between the (monotonic) first-order wfis and the (nonmonotonic) default .

rules. Recall that in NML a first-order wff (say P), and a wfl involving the nonmonotonic

operator M (say (M P)) were aflorded the same status in the object language. And what

we might consider a default rule, such as

(if {and (bird x) (M (fly x)}))
(fly x))

is stself to be considered just a wif in some nonmonotonic theory.

In DL the set of default rules is deseribed in a meta-language. not in the same language

(FOPC) that describes the rest of the world knowledge. So a “default theory” is composed

10




. of a set of ordinary wfls (abbreviated as W), along with a set of default rules (D). In Reiter’s RN

. notat:on a default theory is abbreviated by the symbol A, so to summarize, we have

i A = (W.,D).

Each default rule d looks like this:

‘ a(z) : M B(7) -
(z)

where 7 is a vector of variables, and a, 8, and 7 are wils whose free variables are limited to

those in Z. The rule is intended to mean: for any set of individuals k, if a(:) is true, and
it’s consistent to believe that B(:) is true, then conclude that '7(.1:) is true. {In Reiter’s
definition, there can be any (finite) number of # wfls, but all the default rules we’ll see

involve only one such 8.) Notice that the symbol M has once again showed up, and that

L
once again it is to be read as “consistent”, but here M is included for aesthetics only. It is Lo
not part of the object language. :‘:_;_‘-;

The analogue in DL to the notion of a fixed point is that of an eztension. Every default «L

theory defines zero or more extensions. An extension is itself a set of wils, a superset of W,

" and is intended to be the set of deductions that can be drawn from W along with “licensed™

application of the default rules in D.

In describing NML we had somewhat of a problem coming up with a precise and satisfying
definition of “consistent”, and since we defined the default rules using that word, we once
again bave to make our intended meaning clear. What we mean is that for any extension E '
of a default theory A containing a default rule d as above, and for any vector of individuals

% . it should be the case that if a(k) € E, and if {not 8(k)) & E, then ~(k) € E.

11
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The proof procedure Reiter suggests is similar to that of McDermott and Doyle—it
answers for some sentence ¢ whether ¢ is in some extension. And as you might suspect,
there’s no guarantee that there will be exactly one. Reiter does prove that for a particular
class of default theories, called normal defaults, that there is at least one extension. Normal

default theories are those in which all default rules are of the form

a(z) : MA(z)
B(z)

(1)

(All the defaults of interest to us in this paper are normal, so we will assume from now on
that when we speak of a default theory we speak of a normal default theory. We are ignoring
one more technical point here, which is that Reiter’s results apply to “closed normal default
theories® —those in which a, #, and ~ are closed wffs. Note that the sample default rule (1)
above is free in variables 7, thus is not closed. We will use notation like that in (1) to denote
an (infinite) class of closed normal default rules, formed by substituting for all occurences
of 7 all constant individuals in the language. Since Reiter’s results place no restriction on

the number of default rules in a normal default theory, his results still apply.)

We’re still faced with the problem of multiple extensions, though. As an example consider
again the NIXON axioms from the previous section—we can recast it as a default theory,

like this:

= { (quaker NIXON). (republican NIXON) }

D= (quaker 72) : M (pacifiet 7z) (@gublican 72) : M (not_(pacifist ?2)) }
- { (pcmfut 12) (not (poetfist Tz}

This (normal) default theory has two extensions:

12
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E, = { (quaker NIXON), (republican NIXON), (pacifist NIXON) } RO
E. = { (quaker NIXON), (republican NIXON), (not (pacifist NIXON)) } S

As above, the proof procedure is of no use to us in this case—it will answer “yes” both to Lok
(pacifist NIXON), and to its negation. Once again there’s no way to pick one state of the

world and stick to it (and besides, it’s not clear which extension should be preferred). !

Whether there are significant practical differences between the sorts of situations NML
and DL can represent, and whether there is a class of problems for which one system will
produce a single extension and other will not, is unclear (indeed is one topic addressed by
this paper). Obviously the NML syntax is more flexible than that of DL, in that the M ‘.: T

operator can appear anywhere within a wif. So any default theory can be expressed as

an NML theory, but not vice versa. On the other hand, Reiter claims that this is of no
practical importance, since all realistic problems in default reasoning can be represented by -

normal defaults anyway.

2.3 Circumscription —

McCarthy [12,13] proposes the process of “circumscribing™ an axiom in the first-order pred-
icate calculus over a particular predicate {or predicates). as a means of allowing nonmono-
tonic inference. The intent of circumscribing an axiom over a predicate P is that, in the
resulting theory, any individual k not forced (by the original axiom) to have property P
does not have property P—that is, after circumscription (not (P k}) would follow from the

circumscribed axiom just if (P k) was not a theorem of the original axiom.

'Recent work by Etherington (|7]) reports on a proof procedure that will restrict itself to a single extension,

even if there is more than one in the corresponding default theory.

13
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There are several formal systems floating around the literature bearing the name “circum-
scription.” In the original paper (McCarthy [12]) the axiom is augmented by a (first-order)
axiom schema, thus both the original axiom and the circumscribed axiom are first-order
formulas. In that paper is also presented a model-theoretic characterization of what formu-
las are entailed by the circumscribed axiom (which we will discuss below). In a subsequent
paper (McCarthy [13]) appears a restatement of the formalism in which circumscription
is effected by augmenting the axiom with a second-order formula. In this later version of
circumscription one is permitted to circumscribe over an arbitrary first-order wff instead
of over a single predicate, and the concept of allowing predicates to vary as parameters
to the circumscription (which we will discuss below) is introduced. The model theory for
the second-order theory is not worked out in that paper. Lifschitz [11] provides a further

generalization of the notion of circumscription within the second-order framework.

Since we're not overly concerned with the technical details of circumscription, and since
our result holds no matter which version is chosen, we will feel free in the discussion that
follows to use notation and concepts from several versions of the formalism, as clarity

dictates.

Let's start with an axiom A—a FOPC formula that contains predicate symbols P, B,
and 7?. where Q= {Q;.Q:,...}) and R= {Ri.R>....}. (In the “Nixon™ example above we
wrote a set of axioms that were implicitly conjoined. Note that here we are using a single
axiom, but it could well be a conjunction.) The circumscription of A with respect to P,

using parameters -6 is the following formula:

14
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(1) (nd A(P. Q. R)

(2) (forall (P’. @)

(3) (if (and A(P". @. R)

(4 (forall (z) (if (P> Z) (P z))))
(5) (forall (z) (iff (P* Z) (P Z))))))

{We will refer to this formula as “the circumscription of A with respect to P, using Q as
parameters”, and abbreviate it as Cs(A, P, E’) The potation A(P’, B’, —R‘) stands for the
axiom A with the syntactic substitution of P’ for P, @Q;’ for @Q;, @y’ for Q, ..., etc. Note
that the first conjunct in Cs(A, P, 5) is A itself, so any formula entailed by A will also be

entailed by the circumscription of A.)

VWhat the formula means is that for any choice of substitute predicate P’ for P, if P’
satisfies the original axiom A, and if P’ is at least as strong as P, then P and P’ hoild of
exactly the same individuals. Another way to put it is that the formula “selects out” the
strongest P’ that satisfies A. (All subject to vanation in the parameter predicates Q—we

will see what this means in 2 moment.)

As an example, let’s take A to be the conjunction of the following formulas:

(a')  [(if [olive ?x) (green 7x))
() (if (frog %) (green 7))
{c’) (olive MAX)

(d')  (green BLOCK-35).

We intend that circumscribing over green pick out just the green individuals. That is,
we would expect to be able to deduce (green MAX), and (green BLOCK-35), but for any
individual ¥ other than those two, we would expect to be able to deduce (not (green Y)).

We would thus expect the circumscribed axiom to entail the formula
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(6) (iff (or (= ?x MAX) (= ?x BLOCK-35))

(green 7x))).
(Note that (6) is an instance of the consequent of the circumscription formula, (5) above.
In other words, we seek an equivalence between green and our choice of green’, where green’

is the disjunction in the first line of (6).)

To deduce (6) from the circumscription axiom we have to do two things: demonstrate
both that our green’ can satisfactorily be substituted into the original axiom (thus satisfying
line (3) above), and that green’ is at least as strong as green (satisfying line (4}). The latter

task is easy. in that involves verifying the validity of the formula

(7) (i {or (= ?x MAX) (= 7x BLOCK-35))
(green 7x)))

which is obviously true. Verifying (3) involves substituting our version of green’ into all

formulas in A that mention green, yielding

(a’) (if (olive ?x)
for (= 7x MAX) (= ?x BLOCK-35)))

(b’) (if (frog 7x)
{or (= 7x MAX) (= ?x BLOCK-35)))
(d') (or (= BLOCK-35 MAX) (= BLOCK-35 BLOCK-35)).

It turns out that we can't verify (a’) or (b’), conceptually because it requires the infor-
mation that there are no olives other than MAX, and no frogs at all—information that’s
not contained in A. So far we've allowed no predicates to vary as parameters, so we must

conclude that the desired formula (6) is not entailed by Cs(A, green, ¢).

What we must realize is that the definition of green in some sense depends on the defini-

tions of ofive and frog, so when we circumscribe over green we must allow olive and frog to

16
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vary as parameters. In doing so we note that for the following definitions

(iff (olive’ ?x) (= 7x MAX))
(iff (frog’ 7x) FALSE)

the substitutions into A now work right:

(37} (i (= ?x MAX)
{or (= ?x MAX) (= ?x BLOCK-35)))
(b") (if FALSE
(or (= 7x MAX) (= ?x BLOCK-35}))
(¢7) (= MAX MAX)
(d°] (o (= BLOCK-35 MAX) (= BLOCK-35 BLOCK-35)).

and since (7) is valid as before, the precondition formulas (3) and (4) are satisfied, and the
equivalence (6) is entailed by the circumscribed axiom. In other words, Cs(A, green, {olive, frog})

entails formula (6).

Two important questiops remain unanswered for this method of circumseription: how
does one decide which predicates to use as parameters when one undertakes a particular
circumscription? And what does it mean when one decides to include or exclude a particular
predicate as a parameter? There are no satisfying answers at this point. (See, for example,
McCarthy [13, sect. 5]). We will ignore for the rest of this paper the problem of choosing

parametric predicates, and just choose whichever prove. convenient for expository reasons.

2.4 Model theory for circumscription

To get a precise characterization of what formulas are entailed by the circumseribed axiom,
McCarthy (in [12]) provides some model-theoretic results. Perlis and Minker [22] extend

these results to the version of circumscription allowing predicates to vary as parameters (but
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without resorting to McCarthy’s second-order formalism). The discussion below summarizes

the model theory of circumscription as presented in [22].

Since the intent of circumscription is to “minimize® tbe individuals for which
A P-(P' 3 (P z)?, the counterpart of an extension or a fixed point will be that of a model
of A minsmal in P, subject to variation in Q. Let M and N be models of A. We say that
M is a submodel of N in P relative to -6 if M and ¥ have the same domain, if they agree
on all predicates in A besides P and 5, and if the extension of Pin M is a proper subset of
the extension of Pin N. M is minimal in P (relative to 5) if there are no models, except
for M itself, that are submodels of M in P (again relative to _0.) We say that a sentence o

)

is minimally entailed by A with respect to P and relative to Q (abbreviated A F(P 5 ¥

if ¢ is true in all models of A minimal in P (relative to 6).

McCarthy proves for circumseription a result analoguous to the soundness of FOPC: if

A ’-(PB) o then A F(Pa) ¢. But the converse, the completeness result, does not hold.

Davis [2] provides a counterexample for the general case, but Perlis and Minker [22] show

that completeness does hold in some special cases—for example when the extensions of P

and 6 are all finite.

So how can we characterize the formulas the formulas entailed by Cs(A,P, 5)? Well,

PP
VWSRO N

at best we're in the same position with circumscription as we were with NML or DL: even T
assuming completeness, we can get a proof of a sentence ¢ from Cs(A,P, Q) just in case ¢ S

is true in all models of A minimal in P. And if there is more than one minimal mode! for a

theory, and if a sentence ¢ is not true in all of them, then the contrapositive of soundness

*We will use A I-(P 3 ¥ to abbreviate Cs(A, P, E)) + ¢, and when the choice of 6 is unimportant we

may neglect to mention the parameter predicates, and say A Fp .
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tells us that ¢ does not follow from the circumscribed axiom.

So the question arises again: for any given A, are we assured of any minimal models,
' or, better yet, of exactly one? The answer (to nobody’s surprise) is no. Minimal models do
not always exist (Davis [2]), and we can once more employ our “Nixon” example to show

that there may be more than one.

E The Nixon example doesn’t immediately translate into a form suitable for circumscrip-
tion, but we can use a trick explained in McCarthy [13] and McDermott [15] to obtain the

following:

(if (and (quaker 7x)
(not (ab aspecti(?x})))
(pacifist ?x))

(not (ab aspect2(?x)}}))

K

:

F (if (and (republican ?x)
. (not (pacifist 7x}))

- (quaker NIXON)

P (republican NIXON)

i

; where ab is a predicate in some sense representing “abnormality.” The first formula says
; that for any individual 7x, if ?x is a Quaker and ?x is not abnormal in aspectl, then ?x is
P a pacifist. So we can now circumscribe these formulas with respect to ab (using pacifist,

' quaker and republican as parameters).

' Note that the extension of ab in any model of A must contain either aspect1 (NIXON)

or aspect2(NIXON) —otherwise it would follow from A both that NIXON € pacifist, and
NIXON ¢ pacifist. Furthermore, the extension of quaker and of republican in any model
o must both contain the individual NIXON.
19
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Now consider two models, M; and Mz, where M, has ab; = {aspect] (NIXON)} as its
extension of ab; analogously, ab; = {aspect2(NIXON)}. As we noted above, any model of
the axioms must include one or the other of these individuals in its extension of ab, so there
can be no submodels in ab either of M; or of M2. Therefore both M; and M2 are minimal
in ab. But since NIXON € pacifist; and NIXON € pacifists, neither (pacifist NIXON) nor

its negation follows from the circumscribed axioms.

2.5 Summary and implications

In order to represent the idea of persistences (facts) enduring over time, we are forced to
use a default logic. Any of the three systems we just examined seem adequate to represent
this idea: a single axiom involving M in NML, s single (normal) default rule in DL, and

circumscribing over clipped in circumscription.

Despite their dissimilar appearance, all three systems generally seem to fall prey to the
same sorts of problems: whether it be a NML fixed point, a DL extension, or 8 minimal
model in circumscription, we need a unique one in order to guarantee that we can make
coherent deductions from the theory. No general result (or any but the most trivial results,
for that matter) tells us when we might expect to get a unique fixed point, although we
have seen that the case of conliicting default rules (as illustrated by the Nixon example)
will tend to screw up all three logics. (By that | mean “computationally screw up.” As
mentioned above, the existence of multiple fixed points or extensicns may indeed be the
sppropriate way for the logics to behave under these circumstances, but without the means
to evaluate the theory to see how many fixed points we have, to examine each fixed point,

then to choose the one most appropriate to our reasoning task, it’s not clear that these

20




theories are of any practical value.)

But for the case of temporal reasoning (where the desired nonmonotonic inference is
“non-clipping by default™) we have to wonder whether the pessimistic general results should
really hinder us. After all, our temporal problem doesn’t involve the use of conflicting
defsult rules as we saw them above; as s matter of fact there’s only one default rule, and
it’s the most reasonable kind-—saying “if it’s consistent to believe not clipped, then believe
it.” Perhaps since we are so controlled in our use of the default rules, we can expect better

behavior from the three logics. The point of the rest of the paper will be to find out.
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3 Representing Time in Logic

Before getting on to a detailed look at the axioms for reasoning about time, we should
first review the four things we want to represent in the simple case we’ll be concerned with

throughout the paper. Recall the things we wanted to express:

1. events happen at particular times (instants)
2. facts hold true over intervals of time
3. the occurrence of events may cause {acts to begin

4. beginning to believe a particular fact may cause us to stop believing a contradictory
fact

(4}

lacking evidence to the contrary, facts tend to endure (persist) over time.

Now we should say right off that in no way do we consider this the definitive temporal
representation. To the contrary, our aim throughout the research was to make the par-
ticular representation problem as simple as possible, while still maintaining the essence of
the problem (the ability to represent the five things above). Some of the most obvious
simplifying assumptions we have made are: that events happen instantaneously, that when
an event causes a fact it does so immediately, and that facts tend to endure forever, rather
than for some finite lifetime dependent on the type of fact. These assumptions have allowed
us to do away with metric considerations altogether—there are no distances between time L —
points or durations to time intervals, only ordering information. (See McDermott (16] for
how these extensions might be accomplished.) Relaxing these assumptions to provide a :f:' \: ‘.*:
richer temporal theory would only tend to worsen the technical problems described below,

and would obscure the discussion.

22
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3.1 Problem-independent axioms

We admit three types of individuals into the logic: (time) posnts. patterns, and tokens.
Points mark an instant in time. An event occurs at a particular point, and facts ho'd over
intervals that are defined by their begin and end points. Points may be ordered with respect

to other points.

Patterns describe what happens when an event occurs (e.g. (DROP JOHN VASE)), or
what is asserted to be true during the duration of a fact (e.g. (SAD JOHN)). While patterns

look like ordinary predicate calculus sentences (JOHN being an individual and SAD being a

L .
predicate applied to it). this is not the case. Patterns are terms, so, for example (SAD JOHN)
and (NOT (SAD JOHN)) are just two terms and are not inherently contradictory (because
NOT in this case is not logical negation). We ignore the way these patterns might be
i

combined—how and or and not might be bandled, for example. (See Allen [1], Moore {20]
and Shoham [25) for discussion.) For our purposes, the only things that patterns can do is
contradict each other. and we will have to supply explicit axioms saying when this does and

does not bappen.

Tokens are just unique identifiers. Every occurrence of an event or a fact has a unique

token associated with it, as will a couple of other things to be explained.

The following predicates operate on points, patterns. and tokens: pcause, event, persist,

point. contradict. clipped, ~, <, <. Here are their intended interpretations:

o (pcause tok ofact-pat event-pat nfact-pat)
Using pcause we make explicit the causal forces at work within the system. If an

event with the pattern event-pat occurs while a fact with the pattern ofact-pat is true, el

23 S

- L . e . T T T e e e T . - N .. . o -
. R e AT AT . - At ta e Nt - N . s - e et et e S
A ala . atalala a2t el ala miea PSPPI P AL WA P WL VA U R oty v WA JIE oliP Gy o it P T W v I o LRI S T N W B Y S S WP N A P




Ao S AR dne RAR A B-a AR i S B ik Jaoth e St Aot et et Bad A e P ali e Adraace A LA Sha st g A S Aved go SAag el i WP -y

this causes a new fact, with pattern nfact-pat—its begin point will coincide with the

occurrence of the event.

i o (event tok pat pt)

Tok identifies the occurrence of an event, asserting pattern pat, that happens at point

pt.

W o (persist tok pat bp ep)
Tok identifies the occurrence of a fact (persistence). asserting pattern pat, and holding
true over the interval beginning with point bp and ending with point ep. Bp must

b occur before ep.

e (point pt)

Individual pt is & point.

e (contradict patl pat2)
Pattern pat! contradicts pat2. Facts with patterns that contradict each other tend to
i clip each other.
o (clipped tok pt)
Tok is a token denoting a persistence, pt is a point, and pt “clips” tok. It follows
' that pt occurs after the end point of tok. The begin point of a persistence clips a

contradictory persistence token, and every point occurring later than that point clips

the token as well.

[ (~ p! p?).
(< p1p2).
(< p1p2)
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These predicates serve to order points in time. The first means that pf and p2 happen
simultapeously, the second says that pf happens before p2. The third generally means
that pI happens at the same time as or before p2, but if both pf and p2 are persistence
end points it may be the case that both (< pI p2) and (< p2 p1) hold, but that
(~ p1 p2) does not. In that case < can be taken to mean that the points can occur

in either order.

The above predicates will hereafter be known as the “temporal predicates.”

Next we consider a set of axioms—mostly implications that express formally the pred-
icates' definitions as they were explained above. These axioms are independent of any
particular temporal situation we want to represent, and as a group will be called the “tem-
poral axioms™, or the set T. We will skip some of the less interesting ones; Appendix A

provides a complete list.

The first axiom formalizes the relation between pcause, event, and persist—it’s the way

we can infer the existence of new persistences, and is just a formal restatement of the
definition of pcause above. (This is axiom 1 in appendix A.)

(if (and (pcause 7pc-tok ?ofact-pat ?evt-pat nfact-pat)
(persist 7ofact-tok ofact-pat ?ofact-bp ?ofact-ep)
(event ?evt-tok ?evt-pat ?evt-pt)
(= Pofact-bp ?evt-pt)
(=< Pevt-pt Pofact-ep)))

.- (and (persist

& pt(’pc-tok. ?evt-tok. ?ofact-tok)

b ’nfact-pat

id pb(ipc-tok. Zevt-tok. ?ofact-tok)

pe(?pe-tok. ?evt-tok. 7ofact-tok))
(~ pb{’pc-tok. ?evt-tok. ?ofact-tok} ?evt-pt)})

Note that in order to get a persistence from this axiom, we must first have a persistence.
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ﬂ So how do we get the first one? We explicitly assert the existence of a persistence asserting
:: the pattern ALWAYS. The begin point of this fact occurs before every other point, and the
h fact is clipped by no point:
! (persist PTA ALWAYS PBA PEA)
[ (if (point 7p)
(or (= 7p PBA) B
{< PBA 7p})) - j
AR A&

(if (point 7p)
(not (clipped PTA 7p)))

Next we formalize the clipping process: a point p can clip a fact named by token tok if p

is the begin point of a token tok’ that is contradictory to tok, and if tok begins before tok’

does. A point p can also clip a fact denoted by tok if it falls after a point p’ that clips tok:

(if (and (persist ?fact-tok ?fact-pat ?fact-bp ?fact-ep) “-—
(persist 7clip-tok clip-pat ?clip-bp ?clip-ep) B
(contradict ?fact-pat clip-pat) R
(< ?fact-bp ?clip-bp))

(clipped ?fact-tok ?clip-bp}) Y

(if (and ([persist fact-tok act-pat fact-bp ?fact-ep) ‘ L
(clipped ?fact-tok 7p1) L
(< 71 7p2)) o

(clipped ?fact-tok 7p2))

Next the relation between clipping and point ordering: if a point clips a token, the point
follows (in time) the token’s end point. If a point does not clip a token, the end point of

that token occurs after the point.

(if (and (persist 7tok 7pat 7bp 7p1)
(clipped ?tok ?p2))
(< 7p1 7p2))

%

.................
...................




(if (and (persist ?fact-tok ?fact-pat ?fact-bp act-ep)
(point 7p)
(not (clipped ?fact-tok 7p)))
(=X 7p ?fact-ep))
Note that in the first case we use < and in the second we use <. We need to do that to handle
correctly the ordering between persistence end points. Consider, for example, persistences
tok, and toke, with end points p; and pp respectively, and assume that (not (clip tok, pz))

and [not (clip tok; p;)). Axiom 6 forces the conclusions (< p; pz) and (X p2 p1), while it

needn’t be the case that {~ p; p2).

The begin point of any persistence must occur before its end point. Persistence begin

and end points are points, as are event points:

(if (persist 7tok 7pat 7p1 7p2)
(< 7p1 7p2})

(if (persist ?tok ?pat 7p1 7p2)
{and (point 7p1)
(point 7p2)}))

(if (event 7tok 7pat 7p)

(point 7p))

Contradiction is symmetric:
(if (contradict 7pat, 7patz)

(contradict ?pat: 7pat,))

We'll skip the rest of the axioms, referring the interested reader to Appendix A—all
that's left are axioms defining the point-ordering predicates. They say things like ~ is
reflexive, symmetric and transitive, that substituting points that are coincident preserves

the relations < and =<, that if two points are ~ they are also =, and so on.
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3.2 The default rule

it may well occur to the reader that we haven’t needed to use any default rules yet. Fur-
thermore, given these axioms it’s not clear exactly why we need one at all. To see why,
and where, refer to axiom 6, which says if a point does not clip a token, then the token’s
end point falls after that point. That’s pretty much what we wanted to express when we
said that facts endure over time. But more precisely, that axiom says that if we can deduce
(not (clipped tok 7p}) then we can also deduce (< 7p end(?tok)). But in general the axioms
don’t give us any way to deduce (not (clipped ...))—in fact, that’s exactly the conclusion

we need to jump to.

We needn’t commit ourselves to a particular logic at this point; the default inference is

easily expressed in any of the three. In NML we would simply add the axiom

(if (and (persist ?tok ?pat ?bp ?ep)
(point 7p)
(M (not (clipped ?tok 7p))))
(not (clipped ?tok 7p}})

In Reiter’s logic the above axioms make up part of the set W (problem-specific axioms,

below, complete the set), and the set D consists of a single class of default rules defined by:

(and {persist "tok Tpat "bp Tep) (posnt 7p)) : M (not (clipped Ttok Tp))
(not (clipped ?tok 7p))

To represent this default inference using circumseription we just circumscribe the axioms
over the predicate clipped, letting all the other temporal predicates vary as parameters in

the circumscription.
Hereafter I'll talk about the set T as if it has been augmented with the appropriate
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default rule. For the most part the discussion will make clear which logic we’re adopting

for the moment, or it won’t matter which one.

3.3 Problem-specific axioms

We've now seen the problem-independent axioms, T. For the most part these axioms were
implications—they told us what would happen, for example, sf we had a particular pcause
assertion, and a particular event assertion, and a particular persist assertion, etc. But so far
we have no events, no causality, no contradiction. So no persistences (other than ALWAYS),

no clippings, and no points.

When one wants to reason about a particular temporal state of affairs one must supply

assertions postulating the existence of events, of pcauses, and of contradictions. We will
assume that there are a finite number of each; in the pext section we will make more 13
stringent restrictions on the form they may take. Consider figure 2, which contains a

sample set. We will use this sample problem through the rest of the paper.

The pcause assertions say the following:

e if a person is born. then it’s always the case that that person will start being alive ':':-'.f‘
o if someone loads a gun, then it’s always the case that the gun will start being loaded

o if someone is shot with a gun, and the gun is loaded, then that person will start being

dead

¢ if someone is alive, and that person wins the sweepstakes, then that person will start
being rich.

The contradict assertions say that at no point in time can a person be both alive and

dead. In other words, a fact asserting (DEAD X) will clip a fact asserting (ALIVE X), and

vice veraa.
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(pcause PC-1 ALWAYS (BORN ?x) (ALIVE ?x})
(pcause PC-2 ALWAYS (LOAD ?x) (LOADED ?x)) e
| (pcause PC-3 (LOADED ?g) (SHOOT ?x 7g) (DEAD 7x})

= (pcause PC-4 (ALIVE ?x) (WIN-SWEEPSTAKES ?x) (RICH ?x))
|

i (event EVT-1 (BORN JOHN) PEVT-1)
! {event EVT-2 (LOAD GUN) PEVT-2) e
(event EVT-3 (SHOOT JOHN GUN) PEVT-3) A

(event EVT-4 (WIN-SWEEPSTAKES JOHN) PEVT-4) v

(< PEVT-1 PEVT-2)
(< PEVT-2 PEVT-3) Sl

(< PEVT-3 PEVT-4)

(contradict (DEAD 7x) (ALIVE ?x))

Figure 2: Sample problem axioms
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- PTA -- ALWAYS

e c-’ :‘-.‘ e

'l‘l

Pé
.

2

r

| EvVI-1 -- (born JOEN)

S
o

pt(PC-2, EVI-1, PTA) -- (aliye JOEN) ; ,

§ EVI-2 -- (load cUN)

_ pt(PC-3, EVI-2, PTA) -- (loaded GUN) .

| EVI-3 -- (shoot JOHN GUN)

pt(PC-4, EVI-3, pt(PC-3, EVI-2, PTA)) -- (dead JOHN) _b»;*:«

| evr-g --
(wvin-sweepstakes JOHN)

Figure 3: Ope interpretation of the GUN example

We have four events: JOHMN (a constant symbol representing a particular person) is
born. GUN (a constant symbol representing a particular gun) is loaded, JOHN is shot with
GUN, and JOHN wins the sweepstakes. Furthermore, we know that the times at which
these events happen do not overlap, and that they happen in a particular order. Figure
3 shows a timeliﬂe diagram representing one set of conclusions (clippings, point orderings)
that might be drawn on the basis of these assertions. We will later show that the state of

affairs represented by this line actually models the axioms.

{We're ignoring lots of subtle, and not-so-subtle, points here. For one thing, “shoot” is a
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misnomer. “Shoot X with G” should probably read “point gun G at X at very close range

and pull the trigger”. We furthermore don’t bother updating the number of bullets in the
gun, ete.)

Just to tie together a lot of terminology from several sections back, the union of the
temporal axioms T with a set of problem axioms P forms the set of wffs W that, along
with the default rule, defines a (Reiter) default theory. Similarly, (T U P) with the modal
default rule gives us the desired axiom set for NML, and (T U P) gives us the axiom
set A over which we circumscribe clipped. Now we are set to proceed in earnest with the
analysis: what conclusions (new persistences, clippings, point orderings) should we draw
from these axioms, and are they actually the conclusions licensed by one or more of these

default logics?
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4 Programming the Axioms

Now we have a set of temporal axioms couched in a default logic, where the logic will
license some conclusions and disallow others. Another way to look at the situation is this:
the temporal axioms define a particular (infinite) set of models and each logic admits a

certain subset of these. As we wrote the axioms we presumably had 8 model in mind, or at

least some characteristics that all “acceptable” models should exhibit. The question is how
to express our intent in writing the axioms (our intuitions as to what the “right” deductions
are), and whether the intended models are those admitted by one or more of the default

b»,
h logies.

3 One way to make clear out intentions as to what deductions should follow from temporal

and problem axioms is to write a program that performs the deductions. The program
would take as input a representation of the problem axioms—a set of pcause, contradict,
and event assertions—and would output relations (corresponding to all the temporal pred-
icates) pcause, event, persist, point, contradict, clipped, ~, <, <. To the extent we
could then precisely characterize the program’s 1/O behavior we would also have a precise
characterization of the intended models. (We would first have to prove, of course, that the

program’s output did indeed produce a mode} of the temporal axioms.)

4.1 Restrictions for simplicity

We’re still not at the point, though, where the behavior of such a program is straightforward.
Some loose ends need to be tied up—we need to take a stand on how our program will handle

certain special cases. Two situations of immediate interest are (1) what to do when the
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axioms generate an infinite chain of tokens, and (2) what to do when a particular fact clips

its own support.

l The first case is easy: consider what happens when we have a causality axiom like
(pcause P E P)
C and a P fact happens to be true when an £ event occurs. Conceptually there are an infinite

number of tokens generated in such a situation, having the form

L pt(pc-tok. evt-tok, ofact-tok),
pt{pc-tok. evt-tok. pt(pc-tok, evt-tok. ofact-tok}),

pt(pc-tok. evt-tok. pt(pc-tok. evt-tok. pt(pc-tok. evt-tok. ofact-tok)))
i etc.,

all having the same patterns and coincident begin points.

i In writing a program we have to be careful of loops, and detecting loops such as these
may be difficult. For example, if we allow events to occur simultaneously, we might have

something like this:
.’ (pcause ALWAYS E, P)

{pcause P E- Q)
{pcause Q &, P)

which would cause a loop if an £; event occured at the same time as an £; event. The

)

- chain of pcause assertions leading to such a circularity could be arbitrarily long, and since
- we don’t know ahead of time what events might occur simultaneously, it’s hard to predict
' these dangerous situations.
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More troublesome, however, is the second problem: a token clipping its own support. A

simple example involves the following axioms:

(pcause P E (NOT P))
(contradict (NOT P) P)

Say there’s a P fact true when an E event occurs. As a result, a (NOT P) fact is caused,
which clips the P fact. But at that point there’s no justification for the (NOT P) fact
any more. On the other hand, if the (NOT P) fact goes away, then the P fact is no longer
clipped and the (NOT P) fact is licensed to exist again. So either there are no models of the
axioms (in particular axiom 1 isn’t true), or there is some interval over which contradictory
facts hold. As in the first case it may be difficult to detect this situation, since the chain
leading from P to (NOT P) may be arbitrarily long, and may involve an arbitrary number

of (simultaneously occuring) events.

Although these are important problems for a practical program to reasons about time
(e.g. Dean [3]). for us they are technicalities, and obscure the relationship between axioms
and program. So we will deal with them by prohibiting such situations altogét.her. The
way we prohibit them is by placing some restrictions on the form of the assertions that can

appear as problem axioms. Three such rules do the trick:
1. all event points must be ordered, and must not occur simultaneously. That is, if for
some set of problem axioms P we have

P  (event tok; & p,) and

P  (event tok; e p2)

it must be the case that either
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Pk (<p p2) or

Pk (<p:pi)

2. Pcause assertions must be non-circular. That is, for all pcause assertions mentioning
a particular event type E, {pcause ofact-pat E nfact-pat), if P appears as ofact-pat,

then P cannot occur as nfact-pat for that event type.

3. Pcause assertions must not be self-clipping. For all pcause assertions mentioning a
particular event type E. (pcause ofact-pat E nfact-pat), if P occurs as nfact-pat then no
pattern contradictory to P can occur as ofact-pat in any pcause assertion mentioning

E

So by forcing events to occur in a well-defined order we eliminate the possibility that
cvcles and self-clippings happen across more than one event tyy . Then rules 2 and 3

explicitly prohibit cycles and self-clipping within a particular event type.

We’ll call any set of problem axioms that satisfies these rules a “well-formed problem-

axiom set.” Hereafter we’ll assume this property of any set of problem axioms.

4.2 Writing the program

Writing the program is pretty straightforward now. The main thing that makes things
easier is the restriction that event points be totally ordered. The program can look at the
events as being “sorted” —it can process them one at a time, from earliest to latest. Since in
our intended model of time events can’t affect that part of the world that happened before
they occured, we can assume that if a fact hasn’t been clipped by any point occuring prior

to the current event point, it will never be clipped by that point.
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The algorithm for processing a single event (assuming all previous events have already
been processed) is simple, essentially an exercise in deductive retrieval. Given the event pat-
tern, we look up all pcause assertions that mention it—these will be assertions of the form
(pcause ofact-pat evt-pat nfact-pat). For every such pcause we look to see if there
are any facts that match ofact-pat—that is, assertions of the form (persist tok ofact-
pat bp ep) for any tok, bp and ep. If we find one or more, we next check whether or not
they have previously been clipped. For all that have not been clipped. we can generate a

new persistence with a pattern nfact-pat.

When we create a new persistence we have to do two more things: perform clippings as
peeded, and create new persistences as licensed. First we see if there are any contradic-
tory persistences that should be clipped by this new one—we fetch assertions of the form
(persist tok potential-clip-pat bp ep) where there is also an assertion of the form
(contradict nfact-pat potential«clip-pat). If we find one, and it basn’t already been

clipped, we clip it.

The second step in persistence creation—seeing if there are yet more facts that the new
fact, combined with current event, can cause—is accomplished by exactly the same machin-
ery as above. If the input obeys the non-circularity restriction, the algorithm terminates in
finite time (as there are finite pcauses), though we make no eflort to check the input nor

to try to detect looping.

The actual program was written in NISP (McDermott [18]), and makes calls to the DUCK
deductive retrieval system (McDermott [17]). Appendix B is the code listing and a detailed
explanation of the program. Figure 4 contains a timeline representation of the program’s

output for input representing the sampie problem axioms of figure 2 (you’ll notice that it is
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-— PTA -- ALWAYS - .‘_
| EvI-1 -- (born JOAN)
_pt(PC-2, EVI-1, PTA) -- (ali:ve JOHN)
| EvT-2 -- (load GUN)
_pt(PC-3, EVI-2, PTA) -- (loaded GUN) _ T
| EVI-3 -- (shoot JOHN GUN)
pt(PC-4, EVI-3, pt(PC-3, EVI-2, PTA)) -- (dead JOHN) :
| evi-4 -- :
(vin-sveepstakes JOEN) :
Figure 4: Picture of output for sample problem axioms .

the same picture as figure 3 on page 31), and figure 5 is a portion of the interpretation this
diagram portrays. Appendix C lists the actual program input and output for the “gun”

example.
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persist = { (PTA,
ALWAYS
PBA,
. PEA),
(pt(PC-2, EVI-1. PTA),
(alive JOHN),
pb(PC-2, EVI-1, PTA),
pe(PC-2, EVI-1, PTA)),
C (pt(PC-3, EVI-2, PTA),
(loaded GUN),

pb(PC-3, EVI-2, PTA),
pe(PC-2, EVI-1, PIA)),
(pt(PC-4, EVT-3, pt(PC-3, EVI-2, PTA)),
. (dead JOHN),
n pb(PC-4, EVT-3, pt(PC-3, EVI-2, PTA)),
' pe(PC-4, EVT-3, pt(PC-3, EVI-2, PTA)) }

point = { PEVTI-1, PEVI-2, PEVI-3, PEVI-4,

_ PBA, PEA,

4 pb(PC-2, EVI-1, PTA),

; pe(PC-2, EVI-1, PTA)),

: pb(PC-3, EVT-2, PTA),

- pe(PC-2, EVT-1, PTA)),

' pb(PC-4, EVI-3, pt(PC-3, EVI-2, PTA)),
pe(PC-4, EVT-3, pt(PC-3, EVI-2, PTA)) }

clip = { (pt(PC-2, EVT-1, PIA),
PEVT-3)
(pt(PC-2, EVI-1, PTA),
pb(PC-4, EVT-3, pt(PC-3, EVI-2, PTA))),
(pt(PC-2, EVI-1, PTA),
> PEVT-4),
- (pt(PC-2, EVT-1, PTA),
PEA),
(pt(PC-2, EVI-1, PTA),
- pe(PC-2, EVI-1, PTA)),
® (pt(PC-2, EVI-1, PTA),
pe(PC-4, EVI-3, pt(PC-3, EVI-2, PTA))) }

Figure 5: (Part of) interpretation output by program
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5 The Program and the Default Logics

Recall that our goal in writing the program was to formalize the deductions that should
h be licensed by the temporal axioms—to identify which models should be admitted. The
program generates an interpretation of the axioms, the relevant part of which was listed in

figure 5, but we will have to prove that this interpretation is indeed a model! of the axioms.

. The immediate problem in trying to compare the two descriptions (the axioms and the
program’s behavior) is that the two are organized differently. The axioms (the temporal
axioms, anyway) are mostly implications with one predicate asserted as a conclusion. So
they say “if Pand @ and R are true, then Sis true.” We can thus characterize the “meaning”
of a predicate {say S} in terms of the axioms that allow us to conclude that § holds of an

individual, and in terms of which other axioms mention S in their antecederts.

The program is pot organized that way at all. There’s no one area of the code, for
example, that in isolation represents what happens when a “clipping” occurs. This problem
is even more acute in the case of point orderings, since they aren’t handled by the deductive
retrieval mechanism at all. As a result, it’s sometimes hard to compare what the program

does with what the axioms say.

To solve this problem we will develop an intermediate characterization of the program.
Our notation in describing the program should be close enough to the code itself so that we
can argue convincingly that the description does indeed embody the operations performed
by the program. Yet it must also be organized along lines similar enough to the axioms so

we can prove some similarity there as well.
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5.1 An inductive description of the algorithm

We propose here an inductive description of the algorithm—inductive in that it characterizes
the algorithm as a series of stages, one stage for each event in its input. The i** stage
represents the state of the program after § events have been processed; the 0'* stage is the
initial state of the program, and the n*® stage (for a problem with n events) describes the

program’s output.

The inductive description is organized by relatson (i.c. it is a series of descriptions of
what individuals are included in particular relations at each stage of the program’s compu-
tation), and as such we will better be able to establish a correspondence between it and the
axioms themselves. But first we must demonstrate that the description indeed describes

the program.

To give a sense of what the inductive description looks like, here’s the section that

describes the persist relation (from appendix D, page 99):

1. persisty = {(PTA, ALWAYS, PBA, PEA)}
2. persist; C persist,,;

3. if (pc-tok, pc-ofact-pat, pc-evt-pat, pc-nfact-pat) € PC
and there's a token ofact-tok with pattern ofact-pat,
and a substitution o such that (pc-evt-pat)o = evt-pat;y;,
and (pc-ofact-pat)o = ofact-pat,
and ofact-tok € unclipped-toks;
then (pt(pc-tok, evt-tok,;;, ofact-tok),
(nfact-pat)o,
pb(pc-tok, evt-tok,4;, ofact-tok),
pe(pc-tok, evt-tokiy;. ofact-tok)) € persist, .

4. no others

(The notation z € R4\, is short for z € R,4;\R;, and can be taken to mean that individual
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z is added to relation R at the i+1* stage.)

This part of the description tells us exactly what conditions must hold at the i** stage
of the algorithm in order for a particular tuple of individuals to be included in the persist
relation at the i+1* stage. More particularly. item 1 says that the relation initially contains
only the ALWAYS token, and item 2 says that a persist assertion is never retracted. Item
3 describes the conditions under which a persist assertion may be added at the i+1°
stage—i.e., when the i+1°! event should cause a pew fact. (Note the similarity to axiom 1.)
The relation unclipped-toks; is the set of all facts that have not been clipped by any point
as of the i** stage. The set PC is the pcause part of the program’s input, and corresponds

to the pcause assertions in a problem axiom set.

The rest of the inductive description consists of similar sections for all the temporal pred-
icates. In appendix D you’ll find the complete description, as well as a “proof” that the de-
scription describes exactly the program’s output. The (informal) proof is straightforward—
for each relation/predicate it’s just a matter of examining the program code and verifying
that the conditions under which the inductive description of a relation admits a particular
tuple of individuals at a particular stage are exactly the conditions under which the program

stores the same tuple in the same relation at the same stage.

5.2 The algorithm and the temporal axioms

Now that we've established the correspondence between the program and its inductive
description. we needn’t bother with the code itself any more. When | refer to “program

output” | will mean the output as described inductively.
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Next we have to establish a relationship between the description and the axioms them-
selves. Recall that the program provides an interpretation of the axioms—a universe of

individuals and a set of relations corresponding to the temporal predicates.

We have to show that this interpretation is a model of the axioms. Formally, what we
have to show is this: let T be the temporal axioms, and P be a well-formed set of problem

axioms. For any sentence ¢, if (T U P) ¢, then o is true in the interpretation produced

RN

by the program when applied to input P.

From section D we see that this property is true of all the axioms in P by construction,
since we used the problem axioms directly as input to the program and the program output
them unchanged. Since the axioms in T are all implications, what we have to do is go
through the axioms in T one by one, and show that if the antecedent of the axiom is true

in the interpretation, then the conclusion of the axiom is also true in the interpretation. L q

Let the event assertions in P be of the form

(event EVT; EVT-PAT; PEVT;) i=1...n L,

ordered such that P + (< PEVT; PEVT;) for i < j, and let P; stand for the set of all pcause
and contradict assertions in P, along with the first 1 event assertions. Assuming there are

n event assertions, we have P = P,,. ——

We then prove by induction on ¢ that the program is a model of (T U P). To establish

the base case we can easily show (by reference to the first item in each predicate’s inductive

description) that the interpretation defined by (persist,, clippedy, ...) is a model of
(T U Py). (This is carried out in detail in appendix E.) Then we assume that at the i*

stage the program produces a model of (T U P,). Consider axiom 5, for example:

43 RO

_...‘_._.‘.._.A._.. _‘_..,._:l_...\ T UL PN
-

R U e T . . - e T T AT AN S T T e P S BN PR T
Vet A b AP PP, PRSP R SV RTINS S DEPE WL LS S W GO ST R S R T R % PO G W YRR T,




BNt N e Sl ity S0 el e L0 it et e e S e ;’r\_‘?‘_‘_,,-:_‘

_ -
(if (and (persist ?tok 7pat ?bp ?ep) PN
(clipped ?tok ?p,)) e
(< 7ep ’pr)) W

. which we assume is true at the i'h stage. We assume that e
- if (tok, pat, bp, ep) € persist,, and (tok, p;) € clipped,, o 2
E then (ep, p1) € <;. ; .

We make this assumption for all the axioms in T, then go on to show (again, for all

L}‘ axioms) that the axiom is true at the i+1* stage—for axiom 5 we prove AR
p
.

if (tok, pat, bp. ep) € persistiy;, and (tok, p1) € clippediy,, Ll

then (ep. p1) € <i41-

The proof really amounts to an analysis of cases based on the stage in which the tuple of

individuals is admitted to the relation; for this example the cases are:
1. (tok, pat, bp, ep) € persist; and e
(t‘°k» Pl) € CliPPedo :::_.
2. (tok, pat, bp, ep) € persist; and '_-":',:'.:',
(tok. py) € clipped, \;

3. (tok. pat, bp. ep) € persist;;;\; and

(tok. py) € clipped,

4. (tok, pat, bp. ep) € persist,,\; and
(tok. py) € clipped,

(The notation (tok, pat, bp, ep) € persist,,;\; means that the tuple (tok, pat, bp, ep)

was added to the persist relation at the i+1* stage.) S
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Now we have to prove each case true, or show why it is impossible. The first is covered
by the induction hypothesis. In the second case, we have (ep, p;) € <;4,\; directly by
item 4 in the definition of the relation <. Case three is impossible—a tuple can’t be in
clipped; if it’s not in persist;. Case four violates our restriction on the pcause assertions
in P, which in effect say that if a fact is created at the i+1% stage (i.e. by the i+1* event) it
cannot be clipped at the i+1* stage. We relegate a more detailed proof of this to appendix

E.

That’s the essence of the proof. The rest invoives a similar analysis for all the axioms
in T. We spare the reader that tedium. For those interested, the full proof appears in

Appendix E.

5.3 The algorithm’s model and the default logics

The result just proved tells us in effect that the program’s output is sound with respect to
the temporal axioms—it draws no conclusions contradicting the deductions allowed by the
axioms. We noted above that the effect of all three default logics was to restrict models of
the temporal axioms in one way or another. So now that we have shown that the algorithm
produces a model of the axioms, the next question is whether that model is one of those
admitted by the axioms augmented by one or another default rules. For the three systems

in question we must consider whether

1. the program’s output represents an NML fixed point
2. the program’s output represents a DL extension
3. the program’s model is minimal in the predicate clipped.
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Note that we had to be a little careful in our wording above—the model produced by
the algorithm is a semantic object, while fixed points and extensions are syntactic. We will
specify in the first two cases exactly how one would take the model and build from it a set

of sentences.

5.8.1 Building an NML fixed point

Recall from our discussion of NML in section 2.1 that we’re trying to ascertain whether the
program’s model (properly transformed into an NML theory) is a fixed point of the NM
operator—that is, a set S such that S = NM4(S). The set A here is formed from the
usual temporal and problem axioms (T and P), along with the single “default rule”
(if (and (persist 7tok ?pat ?bp ?ep)
(point 7p)

(M (not (clipped ?tok 7p))))
(not (clipped ?tok 7p))).

Restricting the language L to contain only the predicate symbols mentioned in T and P,
we build an $ from the program output as follows (recall that the program’s output is

characterized by relations R,, where R is a temporal predicate):

1. each sentence ¢ in (T U P)isin S,
2. the default rule above is in S,
3. for each relation R, output by the algorithm, if Z € R,,, then (RZ) € S,

4. for each of the point-ordering relations P (~, <, <) and each pair of individuais p;
and pz € pointy, if (p1,p2) € P then (not (P p1 p2)) € S,

5. for every pair of individuals (tok, p) such that (tok, pat, bp, ep) € persist for
some pat bp and ep, and p € point,, if (tok, p) & clipped,, then (not (clipped tokp))
€S.




Now consider applying the NM operator to this set S—what we do is add to A (which,
recall, is the set of temporal and problem axioms plus the default rule) the set of “assump-

tions” that can be drawn from S. The assumptions are contained in a set of formulas of

the form (M g) where ¢’s negation is not in S. The only interesting such formulas for our

purposes (because they’re the only ones from which anything else can be deduced) are of
k the form (M (not (clipped .. .))).
3

From formulas in M like the above we might use the default rule to derive formulas of
the form (not (clipped . ..)), except note that by item 5 above any formula of this form that
k‘ could be deduced (because it’s negation is not in S) is already in S. Furthermore, because
_ the algorithm models the temporal axioms (in particular axiom 6 that would allow us to

deduce point orderings from formulas of the form (not (clipped ...))) any deductions that

could be made using formulas in As, (S) are already reflected in S. Therefore S (or more

accurately the set S U As, (S)) is an NML fixed point.

It will be useful later on to note that to establish S as a fixed point we used only the
information that the relations from which S was built were drawn from a model of the
temporal axioms. Therefore for any such model M, if one uses the five rules above to build

a set of formulas, that set of formulas is an NML fixed point.

6.3.2 Building an extension

A set of sentences (first-order wffs) E is an extension of a default theory & = (D,W),
according to Reiter’s definition [23, p. 89], if it is the smallest fixed point of the operator

I, defined as follows:
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1. W C I'(E)
2. Th(T(E)) = I'(E}

3. It 2:M2 €D, and o € I'(E) and (not B) ¢ ['(E), then v € I'(E).

We build the proposed extension E in exactly the same way we build the NML fixed
point:
1. each sentence ¢ in (T U P)isin E,

the default rule above is in E,

for each relation R, output by the algorithm, if Z € Ry, then (R z) € E,

el

for each of the point-ordering relations P (~, <, <) and each pair of individuals p,
and p; € point,, if (p;,pz) € P then (not (P p; p;)) € E,

5. for every pair of individuals (tok, p) such that (tok, pat, bp, ep) € persist for
some pat bp and ep, and p € point,, if (tok, p) € clipped,, then {not {clipped tok p))
€E.

It's easy to see that E is a fixed point of the T’ operator: first of all, W = (T U P)
€ E by construction. Since E is a model of (T U P), and since T contains the only
implications in E, E is its own deductive closure. Finally, for any fact token tok and point
p. E contains by construction either (clipped tok p) or {not (clipped tok p}), thus satisfying

the third requirement.

To see that E is the smallest such fixed point, consider E* C E, and a wfl a that's in
E but not in E’. Since o € E, it must have come either from T, from P,, or from the
program’s output (i.e., it’s a sentence of the form (R z ), where R is a temporal prediate).
But if it’s the case. for example, that a € T and a ¢ E’, then W ¢ E’, and E’ is not a

fixed point of I'. Taking a from either of the other two sets that comprise E results in E’
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not containing its own deductive closure, or not embodying the default rule, respectively.

e ¥
Sy T ™ R

Thus E is the smallest fixed point of I', and therefore an extension of the temporal default

theory.

5.8.3 Establishing a model minimal in clipped

E Let M be the model produced by the program (see figures 3 and 5). To show that M is F
minimal in clipped we must show that there’s no model M' whose extension in clipped

(call it clipped ) is a proper subset of the extension of clipped in M (call it clipped ).

n So assume that M’ is such a submodel. Since we’re allowing the other temporal predicates LI
to vary as parameters, the temporal relations in M’ needn’t contain the same individuals as

those in M, but since M'is assumed to be a model, those relations must satisfy the temporal

 \ B

and problem axioms. k» A
First of all, let’s recall (using some notational shorthand) the clippings in M:
i ALIVE fact clipped by these points: N
g the SHOT event point Lo
tbhe DEAD fact begin point
the WIN event
the ALWAYS fact end point
the LOADED fact end point
D the DEAD fact end point.
If M'is to satisfy the temporal axioms, several things must be true (as they are true in
- M): first of all it must contain the ALWAYS fact and its endpoints, it must contain all the
® '
i'» event points and their orderings as they appear in P. From this information we can use I
axiom 1 to conclude that the persist y’ must also contain the ALIVE and LOADED facts. -
Further, note that the LOADED fact cannot be clipped by the SHOT event point, because if it
[ ]
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were clipped  would not be a proper subset of clippedy. But if that’s the case, axiom 6
says that the SHOT event occurs before the end of the LOADED fact, and hence by axiom 1 the
DEAD persistence has to exist in M'. But if persist.iippeq,, contains the DEAD persistence,
and since M’ has to embody all the contradict axioms in P (including the one that says that
being dead clips being alive), it must be the case that the begin point of the DEAD fact clips

the ALIVE fact in M'.

But once we have this “initial” clipping, all the other clippings in M follow directly from
axiom 4. So either M is not a model of (T U P), or it’s not a submodel of M in clipped.

Therefore M is minimal in clipped.
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6 Uniqueness of the Algorithm’s Model

We have noted that the program produces an interpretation for a set of temporal and
I problem axioms, that the interpretation is a model of those axioms, and that the model can
be used to build an NML fixed point and a DL extension, and that the model is minimal

in the predicate clipped. But recall our discussion of section 2, in which noted that the

b existence of such minimal models (here I’'m using the term generically to mean either a
fixed point, extension, or minimal model depending on the logic of choice) is of little use
unless that model is the only one. So the question to be considered now is whether this

" interpretation is the only model, represents a unsqgue NML fixed point or DL extension, and

; is the only model minimal in clipped.

a. The answer to all these questions is no, as we shall show by presenting a counterexample—

|

a second interpretation of the theory consisting of the temporal axioms along with the prob-
lem axioms for the gun example (figure 2) that is also a model minimal in clipped, and can
be used to construct a different fixed point and extension by the same methods we used in

the previous section.

Consider the state of affairs pictured in figure 6. The interesting difference between this

situation and that of figure 4 is that the /oaded persistence ends sometime before the shot

is fired. thus preventing the dead persistence from being created, thus preventing the alive
persistence from being clipped.
) To look at it from the “point of view” of the alive persistence, we might say that the de-
fault rule concerning clipping indicates that the alive persistence wants to remain unclipped
if possible. But if the dead persistence comes into being it is compelled by axiom 3 to clip
b
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= PTA -- ALWAYS e

*; | Evr-1 -- (BORN JOHN) Ll

¢ _pt(PC-2, EVI-1, PTA) -- (ALIVE JOHN)
3

‘!L | Evr-2 -- (LoAD GUN) ..
pt(PC-3, EVI2, PTA) -- (LOADED GUN) L

4

| Evr-3 (sEOOT 30BN GUN) ..
EVI-4 | (WIN-SWEEPSTAKES JOBN) -
pt(PC-5, EVI-4, pt(PC-2, EVI-1, PTA)) -
(RICE JOHN) 5

Figure 6: Alternative model of sample problem
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the alive persistence. Well the dead persistence must be caused by the SHOOT event if it’s
the case that the Joaded persistence endures past the time that event occurs. But if the

loaded persistence does not endure past the time of the shot, it must be clipped by the time

point representing the instant at which the shot happened. And so we atrive at the state

of affairs pictured in figure 6.

k A simpler example might make clearer the sort of situation we’re describing here: if one S
were asked “if | light a match then touch it to a candle wick, will the candie light?” One :Q:f;-':\.-‘

arguably) reasonable answer might be “either the match goes out before you touch it to
gu g

the wick, or the candle will light.” The situation of figure 4 is analogous to the disjunct in

which the candle lights; figure 6 is like the disjunct in which the match goes out.

So what do we make of this state of affairs? Is it a model, and, if so, is it minimal

in clipped? Can it be used, in the same way we used the program’s model, to build a

fixed point or extension? We hope not: the picture represents a state of aflairs in which
something happened to clip the /oaded persistence, but there’s nothing (no event, no fact,
no contradict information) to justify that clipping. We would rather not admit into our

theory of temporal reasoning the possibility of things happening without explicit cause.

Unfortunately, this situation s a model, the model 1s minimal in clipped, and we can use

the procedures of the previous section to build a fixed point and an extension. —

6.1 Establishing another model

To show that we have a model we must show the following sorts of things:

1. any time there are appropriate facts, events, and causality, a new fact is caused (s.e.
axiom 1 is satisfied)
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2. any time there are appropriate facts and contradiction axioms, a fact is clipped (axiom
3)

3. once a fact is clipped it “stays clipped” (axiom 4)
4. if a fact is not clipped its endpoint endures (axiom 6)

5. the point-ordering relations (transitivity, symmetry, substitution) are satisfied.

We’ll skip a detailed demonstration that all the axioms are indeed satisfied. One can
convince oneself of this pretty much by looking at the picture in figure 6: the ALWAYS fact
indeed causes the ALIVE and LOADED facts; and given that the LOADED fact is clipped
by the SHOOT event, it is indeed clipped by all subsequent points. The endpoints of the

unclipped persistences endure beyond all other points. And so on.

6.2 Establishing another fixed point

We can build a set of sentences in the manner we did for the algorithm’s model: include
the senteuces in T and P, add sentences corresponding to each member of each temporal
relation, and for each tok and p such that tok participates in a tuple in persist and

p € point and (tok, p) & clipped, add the sentence (not (clipped tok p)). We showed in

- section 5.3.1 that the resulting set of sentences is a fixed point.

]
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6.3 Establishing another minimal model

We will use the procedure of section 5.3.3 to establish minimality. Let M be the alternative
model of (T U P)(the one pictured in section 6). Its extension of clipped contains the

following pairs:

LOADED fact clipped by these points:
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the SHOT event point

the WIN event

the RICH fact begin point
the ALWAYS fact end point
the ALIVE fact end point

the RICB fact end point.

Again let M' be a submodel of M in clipped. M' must contain the ALWAYS and ALIVE
facts too. 1t must also be the case that in M' the SHOT event clips the LOADED fact, because
otherwise the DEAD fact would come into existence and clip the ALIVE fact, and clipped ».
would not be a proper subset of clippedy. But once again, once we establish this initial
clipping, all the other clippings follow from axiom 4. Thus there can be no submodel of M

in clipped, and M is minimal.

6.4 Establishing another extension

We build a potential extension E as we did a potential fixed point, including sentences in T
and P, sentences corresponding to tuples in the temporal relations, and (not (clipped ...))

sentences as appropriate.

The process of verifying that E is indeed an extension is a complicated one, but it also
turns out to shed light on the reason we find multiple extensions to these theories, so we

will develop the argument in some detail.

First we should establish some notational shortcuts in referring to the various persistences
and points in the theory. Using names such as pe(PC-5. EVT-4, pt(PC-2. EVT-1. PTA)) is
as annoying for the author to type as it is for the reader to recall what it stands for.

Our intent is that the reader should be able to understand the proof from looking at the
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axioms and at the picture (figure 6), so we will introduce some more descriptive names
for the persistences and points. The persistence named by pt(PC-2. EVT-1, PTA) has the

pattern (alive JOHN), for example. Since the patiern is easy to remember, and since JOHN

is irrelevant, we will refer to this token as tok(ALIVE) and to its begin and end points as
begin(ALIVE) and end(ALIVE), respectively. As a result, the theory contains the following
persistences: tok(ALWAYS), tok(ALIVE), tok(LOADED), and tok(RICH), and corresponding
points begin(ALWAYS), end(ALWAYS), etc. Points at which events happen will be pt(BORN),
pt{LOAD), etc.

To verify that E is an extension we’ll use Reiter’s theorem 2.1 |23, p. 89], which says et
that E is an extension if it is equal in the limit to the series Eq, E,, ..., where E; in our

case is (T U P), and you get from E; to E;4; by the following steps:

1. Find all the pairs {tok. p) such that tok is a persistence in E; and p is a point in E;,
and (clipped tok p) is not in E. (In short, this step identifies all potential zpplications
of the default rule.)

2. Form the set E; U {(not (clipped tok p)) } for all the tok and p above.

3. Take the deductive closure. -

Note that (T UP)C Ey CE; ... C E. Since the first step in forming E;;; makes use of
the clippings in the eventual extension E, the verification process is really one of proposing
an extension complete with clippings, starting with the problem axioms, and showing that
all these clippings are “justified” (s.e. they all follow from the first-order axioms along with

all default-rule instances that aren’t contradicted by the chosen clippings).

For this example the clippings in question are as follows:

tok(LOADED) is clipped by pt(SHOOT} g
p(WIN) N
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begin(RICH)

end{ALWAYS)
end(ALIVE)
end(RICH)
But recall from our discussion of minimal models that the first clipping is really the critial :
one—if we can show that tok{LOADED) is clipped by pt{SHOOT), the rest of the clippings
follow from axiom 4, and we are done. ; :
So we start with the sct Eg, which includes the single persistence tok(ALWAYS) and the :
points pt(BORN), pt({LOAD), pt(SHOOT), pt(WIN), begin([ALWAYS), and end(ALWAYS). To .
get E; we take the deductive closure of Eq along with all the “non-clippings” that involve o
tok(ALWAYS) and the five points above.
From these formulas we can deduce two new persistences, tok(AL/VE) and tok(LOADED), %‘_:—::
——
along with lots of point orderings. Some of the interesting sentences in E, are: Terer
(1)  (persist tok(ALIVE) ...) R
(2) (persist tok(LOADED) ...) PR
(3) (~ begin(ALIVE) pt(BORN)) S
(4) (~ begin(LOADED) pt(LOAD)). R
Note, however that we can’t deduce that tok(DEAD) is a persistence, because we can’t
deduce that (< pt(SHOOT) end(LOADED)). -
The interesting default instance that we do add in moving from E; to E, is the sentence >
(5) (not (clipped tok(ALIVE)) pt(SHOOT)), RO
+
from which we have to try to deduce
(*)  (clipped tok(LOADED) pt(SHOOT)). T
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What we want to show, then, is that (*) follows from E; U (5). :.:j‘:.:::
We first consider what the world would have bad to be like in order that tok(DEAD) -’::'f-E:
n‘: s 4t
not become a persistence. So we look at the contrapositive of axiom 1, substituted for that oo
individual:
(if {or (not (persist tok(DEAD) ...) B
‘ (not (~ begin(DEAD) pt(SHOOT)))) -
: (6) {or (not (pcause LOADED SHOT DEAD)) MR
(7) (not (persist tok(LOADED) ...)) R
(8) {not {event SHOT)) e
(9) (not (< begin(LOADED) pt(SHOOT))) S
(10} (not (< pt(SHOOT) end(LOADED)))}). o
But pote that the negation of sentences (6) and (8) are in P, and the negation of sentences
(7) and (9) follow from E,. (Deduce (9) from (4), from the event-point orderings in P, and
from transitivity of =<.) , o
So we can reduce the above implication to
(1) (if (or (not (persist tok(DEAD) ..) RS
(12) (not (~ begin(DEAD) pt(SHOOT)))) —
(13) (not (< pt(SHOOT) end(LOADED)))).
Now we explore the consequences of (13), writing the contrapositive of axiom 6 with
substitution: -
(13)  (if (not (< pt(SHOOT) end(LOADED))) R
(14) {or (not (persist tok(LOADED) ...}) L
(15) (not (point pt(SHOOT))) R
(* (clipped tok(LOADED) pt(SHOOT)))) -~ -
This time the negation of (14) is in E,, and the negation of (15) follows from the event
axiom in P along with axiom 8. So we can combine the two implications sbove to get
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(11)  (if (or (not (persist tok(DEAD) DEAD begin(DEAD) end(DEAD))

(12) (not (~ begin(DEAD) pt(SHOOT))))
:;{ () {clipped tok{LOADED) pt(SHOOT)))).
N

In other words, if E + (11), or if E I (12), then E I (*).

Now we’ll work in the other direction, and see what we can deduce from the interesting

default instance: .

(5)  (not (clipped tok(ALIVE) pt(SHOOT))).

Substituting into the contrapositive of axiom 4 we get

(5)  (if (not (clipped tok(ALIVE) pt(SHOOT)))
(16) (or (not (persist tok(ALIVE] ALIVE begin(ALIVE) end(ALIVE)))

(17) (not (clipped tok(ALIVE) 7p1))

(18) (not (point 7p1})

(19) (not (point pt(SHOOT))) S
(20) (and (not (< 7p1 pt(SHOOT)))
(21) (not (~ ?p1 pt(SHOOT)))))) R,

(Recall that 7p! indicates a universally quantified variable.) We can eliminate the an-
tecedent (since it’s the default we’re adding), along with (16) (which is in E;) and (19)

which follows from the event axiom and axiom 8, so we’re left with

(or (not (clipped tok(ALIVE) 7p1))
{not (point 7p1)) -
(and (not (< 7p1 pt(SHOOT))) R

{not (~ 7p1 pt(SHOOT)))))

and substituting begin(DEAD) for 7p1 we get

(22)  (or {not (clipped tok(ALIVE) begin(DEAD))) Sy
(23) (not (point begin(DEAD))) S
(24) (and (not (< begin(DEAD) pt(SHOOT))) o

(not (~ begin(DEAD) pt(SHOOT))))). RN
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From (23) we can use axiom 8 (contrapositive) to derive (11), and thus derive (*). And ',u'_:z.":i

note that (12), and thus (*), follows directly from (24). So either E F (22), or E  (*). ;.:'.}_f .
Exploring the implications of (22), we take the contrapositive of axiom 3: ;

AR

(22)  (if (not (clipped tok(ALIVE) begin(DEAD))) -

(25) (or (not (persist tok(ALIVE) ...)

(11) (not (persist tok(DEAD) ...) R

(27) {not (contradict ALIVE DEAD) A

(28) (not (< begin(ALIVE) begin(DEAD))) N

In this case the negation of (25) is in E;, (11) implies (*), and the negation of (27) is in P.

So it must be the case either that E - (*) or that E I (28). Ll
.

Plugging (28) into the contrapositive of axiom 15b (along with a substitution) yields:

(28)  (if (not (< begin(ALIVE) begin(DEAD)))
(29) (or (not (~ pt(SHOOT) begin(DEAD)))
(30) (not (< begin{ALIVE) pt(SHOOT))})))

where (29) implies (12) by the symmetry of ~.

But recall that we Lave in E, the sentence

(3)  (~ begin(ALIVE) pt(BORN)).

and that in P we have axioms ordering the event points, in particular

(< pt(BORN) pt(SHOOT)).

So we have by the substition axiom for ~ that E; entails the negation of (30):

(< begin{ALIVE) pt(SHOOT)).

So it must be the case either that E; F (*) or that E; is inconsistent. And from (*), as

we noted, it follows that the situation of figure 6 is an extension of (T U P).
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7 Analysis

In our intial discussion of the three nonmonotonic logics, before describing our temporal

representation, we expressed the hope that our temporal theory would be exempt from
certain difficulties, notably the admission of multiple states of the world (multiple fixed

points, extensions, minimal models).

This turned out not to be the case—in fact the situation we find ourselves in is even
worse than the problem of multiple fixed points we described in section 2. We saw multiple
extensions in the Nixon example, but they both seemed somehow plausible: in one case his
“Quakerhood™ won out over his “Republicanhood”, thus we concluded he was a pacifist,

and in the other case his Republican nature prevailed. Practical difficulties aside (meaning

that we have no way to choose between extensions or explore one of them in isolation), we
have to admit that esther extension represents a reasonable way of looking at the world,

given the premises.

Our temporal theory admits no such ambivalence. We were clear about the conclusions
that should be drawn from the axioms, as evidenced by the precise way our program selected

a model. For a given set of problem axioms there is only one valid world state.

The result of section 6 was unexpected. We had noted in section 2 that the form of the

default rules necessary to represent the enduring nature of persistences didn’t seem to be

the sort of default rules that led to multiple extensions. Recall that in the Nixon example

we had one default rule that “wanted” to assert pacifist of an individual, and another rule
that “wanted to” assert non-pacifist. In the temporal domain there was only one rule, so, we

hoped, there would be no conflicting default inferences to be drawn about any individual.
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The questions then are two: what is it about this nonmonotonic theory that leads to o

multiple extensions? The answer to that question prompts another: is this quality inherent

in the temporal domain, or might we avoid it by carefully restating the theory? If it s A

essential to a temporal logic, is it essential to other represention problems as well?

7.1 Interacting default instances -

Let’s return to the “gun” example, and the program’s model (figure 4, page 38). Consider

how we were able to deduce the clipping : --_f:":f
(clipped tok{ALIVE) begin(DEAD)).

o Aside from the obvious contradict assertion, the main thing we had to have (to satisfy

h the antecedent of axiom 3) was a formula of the form (persist tok(DEAD) ...). And how

were we able to deduce such a formula? In addition to appropriate formulas involving

event and pcause, the antecedent of axiom 1 required that the causing event (the shot)

happen during the span of a LOADED persistence. That is, it had to be the case that .-F_.:'
(< pt(SHOOT) end(LOADED)). But to deduce that point ordering (through axiom 6) we {"ft}:

had to jump to the conclusion
(not (clipped tok(LOADED) PEVT-3)).

In short, in order to deduce a clipping we had to assume & non-clipping.

And here we see the negative interaction we hoped to avoid. It arises not as two default

rules that advise contradictory conclusions, but in the relationship holding between two
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individuals wsthin the theory, such that invoking an instance of the default rule for one

involves being unable to apply an instance of the default rule for the other.

Looked at from the standpoint of our circumscribed axioms, we might say that our aim
in trying to establish a minimal mode] is to “save as many clippings as possible.” In other
words. if we have a choice between putting a particular pair of individuals into the clipped
relation for a particular m .del, we would prefer not to do so. (So in the “gun” example we
chose to assume that PEVT-3 did not clip the LOADED persistence.) The problem with these
pegatively related defaults is that this decision may then require us at some “later” point
to put another pair of individuals in the relation (as we then had to let the DEAD persistence
clip the ALIVE persistence). Conversely (as we did in the second model) we could choose to
let the third event clip the LOADED fact, and in doing so we would save an “earlier” clipping.

As we noted. both models are minimal; the Jogic cannot favor one over the other.

7.2 Ordered individuals

In the above discussion we glossed over another important feature of the problem. Twice
we referred to a “later point” or an “earlier clipping”, but didn’t make precise what we

meant by “later” and “earlier.”

YTy v

»
Since we're working with time, the definition is deceptively easy: a later point is one that
occurs later in time; a later {act is one that begins later in time. But this is a very important
® concept, since it is exactly this ordering of the individuals, imposed by the point-ordering
x predicates, that’s the key to understanding why we as “temporal modellers” favor one model
o (extension, fixed point) over another, but why the logics are incapable of expressing that
». preference.
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Consider this example, which very simply points out the features of the domain that
- lead to multiple extensions: negatively interacting default rules, coupled with ordered indi-

viduals._

We’'ll take a language that has as individuals only the set {ap, a;, a2, as}, and the

predicates s, and ab. The relation s will be successor—it will induce a total order on

E the individuals—and ab will be a one-place predicate, and will stand for “abnormality” of
some sort (in the style of McCarthy [13]). Our default rule will try to express the concept

“assume non-abnormality, lacking evidence to the contrary.” So to do default inference we

will circumscribe over ab (letting s vary as a parameter), or we will add the sentence

R

(if (M (not (ab ?x}))

. (not (ab 7x))).

-

- or we will use the default rule schema

: M (not (ab?z))
(not (ab?z))

Here are the rest of the axioms:

. define the ordering

: (1) (iff (s ?x ?y)

’ (or (and (= 7x 3,) (= 7y a0))
and (= 7x a2) (= 7y &)
(and (= 7x as] (= 7y az)})))

. if an individual is not abnormal, then its successor is abnormal

(2) (if (and (not (ab ?x))
(s 7y x))
(ab 7y))
>
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; individual aq is not abopormal

(3) (not (ab a0))

We can easily enumerate all models of this theory. First of all, the extension of s is fixed
to include exactly the three pairs enumerated in the first axiom, so we will not consider o
it further. The extension of ab must slways contain a;, and must never contain 3. The

possible extensions of ab, then, are the following:

(a) {a. a3}
(b) {a. 22}

(c) {3 3. as}

Note that (a) and (b) are both minimal in ab (neither is a subset of the other) but that
(¢} is not. (It’s also the case that (a) and (b) are NML fixed points and DL extensions, but
we will not prove that.) Model (a) corresponds to the program’s model of the gun example,

in that it’s the result of fixing the ab property of the individuals in the order imposed on

them by the s predicate. That is, we first decide on the status of ap, then of 3,. We have
no choice in either case. Next we decide on 22, and since we do have a choice we choose

that it not be ab. Once we've made that decision, axiom (2) forces us to choose as as ab.

We can get to model (b) by working in reverse order. First we decide that as not be ab. L

The contrapositive of axiom (2) then requires that a; be ab, and as noted above we bave

no choice with regards to 3; or 2.
This second example also makes more clear why the second mode] of the gun axioms
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did in fact turn out to be an extension. We had originally hoped that this would not be
the case. We recalled the definition of an extension, particularly the fact that every wff in
the extension must follow from the first order axioms (the set (T U P) in this case), along
with licensed application of the default rule. We saw only two ways of deriving a clipping
from axioms in T: directly from the begin point of a contradictory token, and indirectly
from another point, once the initial clipping had been derived. We looked at the alternative
model, and saw that the initial clipping (the clipping of the LOADED by the SHOOT event
fit neither of these criteria). So we hoped that we could prove that there was no justification

for this clipping, and therefore that the model could not represent an extension.

What we failed to recognize initially is made clear in the ab example: in model (b) the
contrapositive of axiom {2) tells us that once we chose a5 to be non-ab it had to be the case
that 2, was ab. In fact, the contrapositive of axiom (2) is exactly the justification of the
wil (ab 22) that proves that model (2) is indeed an extension. Translating back to the gun
example, we can now see the line taken by our proof of “extensionhood” for the alternate
model: the (default) assumption that the ALIVE fact was not clipped by the DEAD fact
stself allowed us to deduce that the AL/VE fact must have been clipped by the SHOOT

event.

7.3 Implications for the temporal domain

So now we’ve pointed out two ways of building a minimal model for the ab example (and for
the gun example too, for that matter): one starts at one end or the other of the ordering of
individuals, and when faced with a choice as to whether an individual should be ab or not

(clipped or not), one chooses negatively (in accordance with the default rule}). Whichever
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end you begin at, you eventually arrive at a minimal model.

So should we choose one end of the order to start at over another? As we expressed in
sections 2 and 3, our goal in writing the temporal axioms was to deduce the eflects of certain
events happening in time, coupled with statements about causality and contradiction. We

might call this problem “temporal projection.” And for the temporal projection problem

we are bound by our notion of causality to the view that events in the present can affect
the course of events in the future, but not vsce versa. Thus we are bound to accept the

“past-to-future” model, but no others.

To see what this means in terms of the logics, let’s couch the ab example in temporal e

terms. Consider the successor predicate to indicate fatherhood—(s x y) is intended to mean

“x is the father of y”. Axiom (2) reflects our knowledge about some genetic phenomenon: ".'_ _;_.f_lf-
if an individual doesn’t exhibit a particular trait (the “ab” trait), then his son will. Or put
more specifically, a father’s lack of “ab” causes his son to be “ab”. The contrapositive of

axiom (2), then, could be read to mean that a person’s lack of “ab” caused his father to

have had the trast. Obviously we want to allow the first such inference but not the second. —

We've now mentioned two ways to get minimal models out of this sort of theory (start
from the beginning and move forward, and start from the end and move backward), but it '::'1‘;‘
should be clear that there are other, even less intuitive minimal models as well. In fact, one
might start anywhere in the order of individuals, fix it as “normal”, then simultaneously V:‘_-;l"--'
work forward (inferring what this normality implies) and backward (inferring what must
have happened in order for this individual to have been normal). In any case, it’s clear
that these models will all describe states of the world that are internally consistent but

incomparable. and also that only one of the models is an accurate portrayal of our intentions

67

L . - L e SRR . J T T T S O T AT
~

S T e e e e A T T e T o SN
A R T T T e e e T - .
Pl N Y Dt LD WUR SO WL W) W YR W W e R MRy P




when we wrote the temporal axioms.

7.4 Set inclusion as a minimality criterion

We had initially thought that the models problem might be due to the particular way we
expressed the temporal axioms—that an alternative phrasing might make the problem go
away. The “father” example above provides strong evidence to the contrary: conflicting
default instances and ordered individuals seem essential to any temporal theory, and these

theories seem inevitably prone to multiple inter'pretations.

We might also wonder whether the default logics might be coerced somehow to accept the
intended model as the only valid one. Perhaps circumscribing over ab was wrong, and we
might define some other predicate (or predicates) that are minimal in the circumscriptive
sense just in case the temporal predicates have extensions corresponding.to the past-to-

future interpretation produced by our program.

The problem seems to be that “minimal in the circumscriptive sense” is inexorably tied
to the notion of set inclusion. Recall that a model minima! in a predicate P is minimal
because no other model's extension of P includes fewer individuals 3. But recalling the
models of the “father” example above (p. 7.2), Do notion of set inclusion seems to capture
the difference betwe s the alternative models. In fact, the notion of minimality expressed by
the program (start with the first individual, assume that it's non-abonormal if consistent to
do so. make inferences as warranted by that assumption, then go on to the next individual in

the order) seems unrelated to any notion of set inclusion. In any event, we have been unable

3The notion of “prioritized circumscription”™ (McCarthy {13}, Lifschitz [11]} also seems bound to the notion

of minimality measured by set inclusion.
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- to find any predicate that has minimal extension just in case the program’s interepretation
L is satisfied, and must conclude that there is no straightforward way to express in the logic

i the notion of minimality inherent in the program’s inductive description.
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8 Conclusion

We noted at the outset of this paper the paucity of results applying default logics to practi-
cal representation problems in Al. Researchers in the field have either avoided talking about

the problem altogether, or have gone ahead and used a default logic, with the implicit as-

sumption (or hope) that since it was clear what they meant to express in their theory, the
semantics of their chosen formal system would eventually be understood and would corre-
spond to their wishes. While the “multiple models” problem has always been recognized
as a technical problem with default logics, ([19,15,23]), it has always been hoped that the
problem would not manifest itselfl in practical applications. (It was always recognized that

there might be more than one model, but it was hoped that each would at least have scme

intuitive justification, as in the Nixon example.) ST

So McDermott in his temporal logic [16, p. 121] uses the M operator, along with an

explanation of what idea he tntends that it capture. McCarthy claims [13, sect. 9] that

circumseription solves a particular version of the frame problem. Joshi {10} couches rules for
conversational interaction in terms of default rules in Reiter’s logic, along with an English- ;;',':-'.;l

language explanation of what they are supposed to mean. In each case the researcher has

in his own mind a clear idea of what conclusions his theory licenses—what conclusions
should be allowed by the logic—and the syntax of the default logics (seem to) provide a

parsimonious way for him to express those intentions.

We have shown that for a particular problem, that of temporal projection, the assumption
that the semantics of nonmonotonic logics will “work out right” is a bad one. We were

able to express our temporal theory in a default logic, and able to explain inductively
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the conclusions we intended the inference mechanism to draw. But these were not the
conclusions licensed by any of the default logics. This problem seems to be inherent in the
temporal representation, and plagues all the default logics we know of. We must conclude,
therefore, that McDermott’s temporal logic does not have its intended meaning, and that

circumseription (in its present form) does not solve the frame problem.

Other temporal ontologies have avoided couching their theories in 8 default Jogic. Hayes,
for example (in |9]), introduces the potion of a history—a continuous chunk of space/time.
The piano in my living room, for example, is represented by a “piano in the living room
history” that has botb a spatial and temporal extent. Temporal projection must eventually
show up in Hayes’ theory in deducing the duration of these histories. So if I see the piano
in the living room this morning, | may want to project that its history endures past the
time that I actually observe it. {Note the similarity to the persistence of facts.) But such
a conclusion cannot follow from Hayes’ system (as it is expressed in first-order predicate
calculus), since it involves defeasible inferences (as we saw in the case of persistences).
Eventually this problem with Hayes’ theory must be addressed, and our research suggests

that it can’t be solved within the framework of present default logics.

If nonmonotonic logics are to be more than a mathematical curiosity, it must be demon-
strated that they correctly represent some significant class of reasoning behavior falling
outside the boundaries of traditional deduction. It was originally hoped that “default infer-
ence” was such a class: that there was a significant class of problems (temporal projection
among them) in which the reasoning process was “deductive except in exceptional cases”,

and in which the exceptions to deductive reasoning could be expressed by the default rules.

It’s not clear any more that such a class exists. While there has been limited success
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in proving that default logics do the right thing (most notably the work of Etherington 7]
and Etherington and Reiter 8] in formalizing inheritence hierarchies with exceptions), our

demonstration that temporal projection is not reasoning of this same sort calls into question

whether nonmonotonic logics are indeed adequate to represent a significant class of non-

deductive reasoning problems.

If this is indeed the case—that is, if a significant part of defeasible ressoning can’t be T
represented by default logics, and if in the cases where the logics fail we have no better way
of describing the reasoning process than by a direct procedural characterization (like our
program or jts inductive defipition), then logic as an Al representation language begins to

look less and less attractive.
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A Axioms for Describing Persistences and Clipping

Variables beginning with question mark are universally quantified. Constant symbols (ax-
jom 2 only) are in upper case, and Skolem functions are written in “traditional” functional
notation {e.g. pt (pc-tok, evt-tok, ofact-tok)).

Axiom 1 Creating persistence tokens

(if (and (pcause 7pc-tok ?ofact-pat ?evt-pat ?nfact-pat)
(persist ?ofact-tok ?ofact-pat ?ofact-bp ?ofact-ep)
{event Zevt-tok ?evt-pat Tevt-pt)

(= 7ofact-bp ?evt-pt)

(= Zevt-pt ?ofact-ep)))

(and (persist

pt(7pc-tok. ?evt-tok. ?ofact-tok)
?ofact-pat
pb(?pc-tok, 7evt-tok. 7ofact-tok)
pe(?pc-tok. Pevt-tok. ?ofact-tok))

(~ pb(7pc-tok, Zevt-tok. ?ofact-tok)
Zevt-pt)))

Axiom 2 The ALWAYS token

(persist PTA ALWAYS PBA PEA)

(if (point 7p)
{or (= 7p PBA)
(< PBA 7p,)))

(if (point 7p)
(not (clipped PTA 7p,)))
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Axiom 8 Persistence clipped directly by a contradictory token

(if (and (persist ?fact-tok ?fact-pat ?fact-bp ?fact-ep)
(persist ?clip-tok ?clip-pat ?clip-bp ?clip-ep)
(contradict ?fact-pat clip-pat)

(< ?fact-bp 7clip-bp))
(clipped ?fact-tok ?clip-bp))

Axiom 4 Persistence clipped indirectly by a point

(if (and (persist ?fact-tok ?fact-pat ?fact-bp ?fact-ep)
(clipped ?fact-tok 7p,)
(point 7py)
(point 7p2 )}
(2 7pr 7p2))
(clipped ?fact-tok 7p-))

Axiom 5§ Clipping implies <

(i7 (and (persist 7tok ?pat 7bp 7ep)
(clipped ?tok 7p, ))
(< 7ep ’;r))

Axiom 6 DPersistences endure unless clipped

(if {and (persist ?fact-tok ?fact-pat ?fact-bp fact-ep)

(point 7py )
{not [clipped ?fact-tok 7p;}))

(< 7p, “act-ep))




T bt

¥,

- Axiom 7 Begin point must come before end point

- (if (persist ?tok 7pat 7p, ?p2)

| (< 71 7pz))

E Axiom 8 Defining what things are points ; _—

, (if (persist ?tok ?pat 7py 7p2)
- (and (point 7p; )
" (point 752)))

. (if (event ?tok 7pat 7p,)
(point 7p })

Axiom 9 Contradiction is symmetric

. (if (contradict 7pat, 7paty) RAEat
(contradict pat, 7pat)) S
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For these point ordering axioms I will assume that variables starting with “?p” are of type
posnt. That is, all axioms are of the form:

(if {and (point 7p,)
{point 7p2)

-body-)

Axiom 10 ~ is reflexive, symmetric, and transitive

(~ 1 7p1)

(if (~ 7oy 7p2)
(~ 2 1))

(if (and (~ 7py 7p:)
(~ ?p2 7ps))
(~ 7p1 7ps))

Axiom 11 < is non-reflexive, antisymmetric, and transitive

(not (< 7py ;)

(if (< 7py 7pz)
(not (< 7pz 7p1)))

(if (and (< 7p; 7p2)
(< 7z 7ps))
(< 7py 7ps))

78




........

P A S e T S S e RN
I S R A I I T . W R A S ST TPy e P e

Axiom 12 Transitivity relations for < and <

(if (and (% 7Py 7p2)
(=< 7p> 7ps))
(< 7p1 7ps))

(if (and (< 7p; 7p2)
(< 7pz 7ps))
(<7 -7P3))

(if (and (< 7py 7p2)
(< 7pz 7ps))
(< 7py 7ps))

Axiom 18 ~ and < imply =
(if (~ 7py 7pz)
(= 71 7p2))

(if (< 7P 7p:)
(=% 2y 7p2))

Axiom 14 ~ and < incompatible with converse form of <
(if (~ ?py 7p2)
{not (< 7p: 7p1)))

(if (% ?p1 7p2)
(not (< 7p2 7pr}))
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Axiom 15 Substituting ~ points preserves < and =

(if (and (~ 7y 7p2)
(< 7y 7ps))
(< %pz 7ps))

(if (and (~ 7py 7p2)
(< 7ps ’p1)) e
(< 7ps 7pz)) s

(if (and (~ 7p, 7p2)
(< 7p1 7ps))
(< 7p= 7ps))

(if (and (~ 7py 7pz) ; :
(:5 7P3 7pl)) t._ et
(= 7ps ’p2))) S
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B Program for Reasoning about Events and Facts

This appendix will be in two parts: a high-level description of the code, and a listing.

B.1 Program description

Refer to appendix C for an example of program input and output. The general purpose of
the program is to take information about causality (in the form of pcause and contradict
assertions) and about events occuring, and to output lists of persistences, points, clippings,

and point orderings.

The program’s state is contained, for the most part, in the set of assertions posted to
the DUCK database, involving the relations pcause, contradict, event, persist, and
bucket. The first four have meanings corresponding to predicates in the logic. Bucket is a

relation over points, and is used to infer point orderings. It is explained below.
The main operations the program must perform are these:

1. add 8 new event (function add-event)

2. bring a new persistence into existence {functions event-cause-persist and persist-
cause-persist)

3. clip a persistence (function persist-clip-persist)

Information about the events, persistences, pcauses, and contradictions correspond to ex-
plicit assertions in the DUCK database. (So to get a list of the persistences the program
just fetches all DUCK assertions involving that predicate.) But points, point oiderings,
and clippings are represented implicitly. This information is held in DUCK assertions of

the form (bucket p n), where p is a point (that is, an event point or persistence begin or
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end point), and n is a nonnegative integer (representing the “bucket index” of the point).
A lower bucket index generally means a point occuring earlier in time, but we’ll see in a

moment exactly what information is conveyed by the index.

When the program adds a new event it (conceptually) adds two new buckets, with indices

one and two greater than those added for the last event. Into the first it puts persistence

endpoints for those facts clipped directly by newly created facts (“newly created facts”
being those caused by the event just added). Into the second bucket it puts the new event
point. along with the begin points of any persistences caused by the new event. The it*
event point will be put in bucket 2¢; endpoints of persistences first clipped by the it* event :

will be put in bucket 2¢ - [.

Aside from the 2n buckets created as a result of processing n events, there is a bucket
(with index 0) holding the point PBA—tl;e begin point of the ALWAYS fact—and a bucket h.,_...
holding endpoints of all persistences not currently clipped by any points. The “unclipped” =
bucket has index 2n + 1. A clipped persistence, then, is one whose endpoint is not in the
“unclipped” bucket, and the points that clip it are exactly those points with numerically

greater bucket indices.

Determining point orderings, say between points p; and p;, is a matter of retrieving ',::{:'.-.‘

the associated bucket assertions—for example (bucket p; by) and (bucket po bs). The R

rules for assigning an ordering for points p; and ps. given bucket indices by and b. respec-

tively. are as follows:

1. if py = p then (~ p; p2)
2 if 8; = b; and b, is even, then (~ p; p2)

3. if b] < b: then (=< P1 p:)
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4. if , < b3 then (< py p2).
Note that < doesn’t strictly mean “either ~ or <. If p; and p; are both in bucket

2n + 1, for example, rule 2 dictates that (<X p; p2) and (<X p2 p;), but not (~ p; p2).

In appendix E we prove ihat these rules lead to the correct transitivity, symmetry, efc.

properties.

Now we present the program code itself.
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B.2 Program code

;ttttt#‘ttt‘tttt*t*tt‘ttttt“ttt#t‘tttttt‘tttt“‘tt“‘ttt‘tt‘t‘t‘

: 6/9/85

; Simple temporal program for events, persistences, and time-point
: ordering. MNost all the work is done by DUCK assertions of the
; form EVENT, PERSISTENCE, and BUCKET

. Corresponding to terms in the logic are TOKENs (unique identifiers ",_4

; for PCAUSEs, EVENTs, and PERSISTences), PATTERNs (the fact type A
asserted by a particular event or persistence), and POINTs (points T

; in time that also define intervals over which persistences hold).

(deftype TOKEN SEXP)

(deftype PATTERN SEXP)

(deftype POINT  SEXP)

(specdecl INTEGER
(eventnos 1) ; for making up TOKEN names for events and
(pcausencs 1)) ; pcause assertions

(specdecl FIXNUM (debug-levels 1))
0 is none, 1 is cursory, >1 is verbose

(:= type-check* ())
; keep NISP from complaining about DUCK for-each-ans bindings

;ttttttttttttttt.ltttttt‘t‘tttt"t“‘t‘tt‘tttt‘ttt“‘t“t"‘tt“““‘t
The main thing we do is add a new event -- only its PATTERN is

; input here, and the event is assumed to happen AFTER the last event

.. that was input. Here all we do is make up a (unique) token name for

; the event and for the time point at which it occurs, ADD it to the

; DUCK database, and see what persistences it causes.

(proc add-event VOID (PATTERN event-pat)
(let (TOKEN (event-tok (symbel EVT - (< eveatmos)})
POINT (event-pt (symbol PEVT - (< eventno*))))
(:= eventno* (+ #-¢ 1))
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(make-evt-buckets event-pt)
(add (list 'event event-tok event-pat event-pt))))

(lisprule event (event ?tok ?pat 7?b) ->
(evt-cause-persist ?tok 7pat 7b))

:tttttttttttt#tttttttt#‘ttttttttttttt“tttt‘tttttt“‘t‘tttttttttt‘ttttt
. EVT-CAUSE-PERSIST and PERSIST-CAUSE-PERSIST are pretty much the same:
i check the database to see whether there are PCAUSE, PERSIST, and

. EVENT assertions to license adding a new persistence, and if so,

. add it.

(proc evt-cause-persist VOID (TOKEN evt-tok PATTERN evt-pat POINT evt-bp)
(for-each-ans
(fetch ;(pcause ?pcause~tok ?fact-pat ,evt-pat ?der-pat))
(for-each-ans
(fetch ;(persist 7fact-tok ,7fact-pat ?fact-bp ?fact-ep))
(cond
((in-interval evt-bp 7fact-bp ?fact-ep)
(add-persist 7der-pat 7pcause-tok evt-tok ?fact-tok))))))

(proc persist-cause-persist VOID (TOKEN fact-tok PATTERN fact-pat POINT bf ef)
(for-each-ans (fetch ;(pcause ?pcause-tok ,fact-pat Tevt-pat ?der-pat))
(for-each-ans (fetch ;(event 7evt-tok ,7evt-pat 7be))
(cond
((in-interval ?be bf ef)
(add-persist 7der-pat ?pcause-tok 7evt-tok fact-tok))))))

; ADD-PERSIST ADDs a new persistence with the given pattern to the

. database. It makes up "Skolem" terms for the persistence’s token-id,

; begin point, and end point, then adds the PERSIST assertion and the

. POINT assertions to the database. Doing the ADD will automatically

; trigger calls to PERSIST-CLIP-PERSIST and PERSIST~CAUSE-PERSIST as well.

(proc add-persist VOID (PATTERN der-pat TOKEN pcause-tok evt-tok fact-tok)
(let ((names (list pcause-tok evt-tok fact-tok)))

(add-point (cons 'pb names) 'event)

(add~point (cons 'pe names) ‘persist)

(add (list 'persist
(cons 'pt names)
der-pat
(cons ‘'pb names)
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(cons 'pe names)))))

(lisprule chain (persist ?tok ?pat ?b %e) ->
(persist-clip-persist 7tok ?pat 7?b 7e)
(persist-cause-persist ?tok 7pat ?b 7e))

; PERSIST-CLIP-PERSIST looks to see if the given persistence named

; by the given tokenid may clip any existing persistences. To do so
. we just look in the database for any contradictory patterns, see

; if there are any tokens that assert these patterns, and see if they
; happen in time before the input persistence. If so, all there is

; to clipping is to move the clipped persistence’'s endpoint before

; the current event point. There’s also a "consistency” check, to

; prevent the sitvation where a persistence knocks out its own

. support (in other words, where a persistence gets clipped by the

; same event that caused it)

(proc persist-clip-persist VOID (TOKEN tokid PATTERN pat POINT bp ep)
(for-each-ans (fetch ;(contradict ?clipped-pat ,pat))
(for-each-ans (fetch ;(persist ?clipped-tok ,?clipped-pat 7bc ?ec))
(cond
((pteq bp 7bc)
(earror persist-clip-persist
0
"Incongistency -- token " 7clipped-tok " trying to clip "
tokid -1))
((in-interval bp ?bc Zec)
(delete-point 7ec)
(add-point Zec ‘clip))))))

:ttttttttttttttttttt‘ttt*ttt*“tttt‘tt““““it““ttt.‘tt‘t“

; Manipulating points and orderings.

; All points are put into buckets when the corresponding event or

: persistence is added to the database. Buckets are represented by

; a DUCK assertion of the form (bucket p b) where b is an integer.

; In general a smaller bucket means earlier in time. Bucket number one
H contains just the begin point of the ALWAYS persistence. 0dd-numbered
; buckets contain only event points and persistence begin points;

; even-numbered buckets contain only persistence end points. End points
; of unclipped persistences are given a2 bucket number of PERSIST-BUCK#*

; -~ 2n+1 vhere n is the number of events.
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: (specdecl FIXNUN
N (persist-buck* 0) ; this will be set by init-buckets
(cur-evt-buck#* 0)) ;. incremented by 2 on every event

; BUCKET function maps a point into its bucket number

(func bucket INTEGER (POINT p)
(let ((f (fetch ;(bucket ,p ?x))))
I 7(x (car £))))

; A bucket index refers to an event bucket iff it's even

(func event-bucket BOOLEAN (FIXNUN buck-indx)
(= buck-indx (* 2 (fix (/ buck-indx 2)))))

! ; ADD-POINT -- add point to a bucket (by making appropriate DUCK
. , assertion.) Second argument is ome of:

: ; 'EVENT add the most recent event bucket

h ; *CLIP add to the most recent clipped bucket

. ; "PERSIST add to the bucket of unclipped persistence endpoints

(proc add-point VOID (POINT pt OBJ where)
(selq where

i ((event) (add ;(bucket ,pt ,cur-evt-buck+)))

' ((clip) (add ; (bucket ,pt ,(- cur-evt-buck* 1))))

' ((persist) (add ;(bucket ,pt .persist-buck+*)))

f (t (earror add-point () "invalid add optiomn: *® where))))

(proc delete-point VOID (POINT pt)
(for-each-ans (fetch ;(bucket ,pt ?x))
(erase j(bucket ,pt 7x))))

; Point orderings -- =p <p =<p

; Two points are =p if they’'re the same point, or if they're in
; the same event bucket.

: (<p p1 p2) if their respective buckets are so ordered by <

: (=<p p! p2) if their respective buckets are so ordered by <=

(func =p BOOLEAN (POINT p1 p2)
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(let ((b1 (bucket p1)) (b2 (bucket p2)))
(or (pteq pi p2)
(and (= bi b2) (event-bucket b1)))))

(func <p BODLEAN (POINT pl p2)
(let ((b1 (bucket p1)) (b2 (bucket p2)))
(¢ b1 b2)))

(func =<p BOOLEAN (POINT p1 p2)
(let ((b1 (bucket p1)) (b2 (bucket p2)))
(¢= bl b2)))

; IN-INTERVAL ~- Does pl1 fall within the interval formed by p2 and p37?

(func in-interval BOOLEAN (POINT p1 p2 p3)
(and (=<p p2 p1) (=<p p1 p3)))

: PTEQ -- Are p! and p2 identical points?

(func pteq BOOLEAN (POINT p1 p2)
(cond
((and (quark p1) (quark p2)) (eq p1 p2))
((or (quark pl) (quark p2)) 0]
(t (and (eq (car p1) (car p2))
(<t pteq (cdr p1) (edr p2))))))

(func ptindx FIXNUN (POINT p (1st POINT) plist)
(let (FIXNUN (fail (+ -1 (* -1 (length plist))))
(ans -1))
(:= ans (ptindx-aux p plist fail))
(cond ((> ans 0) ans)

(t -1))))

(func ptindx-aux FIXNUM (POINT p (lst POINT) plist FIXNUN fail)

(cond
((null plist) fail) R
((pteq p (car plist)) 1) A

(t (+ 1 (ptindx-aux p (cdr plist) fail))))) -

; MAKE-EVT-BUCKETS -- move the pointer CUR-EVT-BUCK* up by two, to
reflect a nev event bucket and a bucket for those persistence endpoints
; clipped by the nev event point. Add point P to the new event bucket.
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(proc make-evt-buckets VOID (POINT p)
(:= cur-evt-bucks (+ 2 #-%))
(add-point p 'event))

(proc init-buckets VCID (FIXNUN n POINT bp ep) . 0 is number of events

;t‘ttttttttt‘tttttttt‘“‘“‘ttt“lt‘tt““““‘t‘t““.“‘

i INIT -- erase everything, and add the ALWAYS token

(proc init VOID (FIXNUN n) ; mn is pumber of events

(proc erase-assertions VOID ()

;ttttt‘.t‘t“ttttt‘t‘l‘t“"&l‘O‘ttt““““““‘t‘t““tt'.“#“t“t‘

; Running a problem involves initializing, adding contrdiction and

(proc run-test VOID (ipt)

el e U T VT ER TR SO -Lo.'s.'-“,lrl."r--.- .

(:= cur-evt-buck* -2) ; this will immediately be bumped to O
{make-evt-buckets bp)

(:= persist-buck* (+ (*+ 2 n) 1))

(add-point ep 'persist))

User interface

(erase-assertions)
(init~buckets n °‘PBA 'PEA)
(add ' (persist PTA ALWAYS PBA PEA)))

(for-each-ans (fetch ‘(bucket 7p 7b))
(erase ’(bucket ?p 7b)))
(for-each-ans (fetch '(persist ?tok ?pat 7beg ?end))
(erase '(persist 7tok ?pat ?beg 7emnd)))
(for-each-ans (fetch '(event ?tok ?pat 7beg))
(erase ‘'(event ?tok ?pat ?beg)))
(for-each-ans (fetch '(contradict 7patl ?pat2))
(erase '(contradict ?patl ?pat2)))
(for-each-ans (fetch '(pcause 7tok 7fpat Zepat 7dpat))
(erase ‘(pcause 7tok ?fpat 7epat 7dpat))))

pcause assertions, then adding the events one by one. Then we
dump out the results. Input to RUN-TEST is a list of contradictionms,
a list of pcauses, and a list of events.

(init (length (caddr ipt)))
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(stdmsg -1 “ssssssssas® -1)
(add-contras (car ipt))
(add-pcauses (cadr ipt))
(add-events (caddr ipt))
(dump-inputs)
(dump-outputs)

(stdmsg -1 “¢ssxxsssssn))

(proc add-contras VOID (contras-in)
(loop for (OBJ (contra-clause in contras-in))
(add (cons ‘contradict contra-clause))))

(proc add-pcauses VOID (pcauses-in)
(loop for (0BJ (pcause-clause in pcauses-in))
(add (coms ’'pcause
(cons (symbol PC - (++ pcausenos+))
pcause-clause)))))

(proc add-events VOID (events-in)
(loop for ((e in events-in))
(add-event e)))

;tttt.ttttttttttttttt‘ttttttttt‘ttt.“ttttt“tttttttttttttt“‘tt‘tt‘tttt‘tttt
; Printing results: dumping inputs means all pcauses, events and contras.
; for output we dump persistences, points, and clippings, and point orders.

(proc dump-inputs VOID ()
(stdmsg -1 "Pcauses:" -1)
(for-each-ans (fetch ‘'(pcause ?tt ?fpat 7epat ?dpat))
(stdmsg (t 4) ?tt (t 12) ?fpat (t 20) Zepat (t 28) ?dpat -1))
(stdmsg -1 "Contradictions:* -1)
(for-each-ans (fetch ‘(contradict ?patl ?7pat2))
(stdamsg (t 4) 7patl (t 28) ?pat2 -1))
(stdmsg -1 "Events:" -1 )
(for-each-ans (fetch '(event ?tt ?pat ?7b))
(stdmsg (t 4) 7tt (t 12) 7pat (t 20) 7b -1)))

(func dump-outputs VOID ()
(let ((persist-list (build-persist-list))
(point-list  (build-point-list)))
(dump-persists persist-list)
(dump-points point-list)
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(dump-clips persist-list point-list)
(dump-orderings point-list)))

(func dump-persists VOID (persist-list)
(stdmsg -2 "Persistences:* -1 )
(loop for ((persist in persist-list)
FIXNUM (i 1 (+ i 1)))
(stdmsg (t 4) i "."
(t 8) (car persist) -1
(t 10) (cadr persist) -1
(t 10) (caddr persist) -1
(t 10) (cadddr persist) -1)))

(func dump-points VOID (point-list)
(stdmsg -2 "Points:" -1)
| (loop for ((pt in point-list)
FIXNUM (i 1 (+ i 1)))
(stdmsg (t 5) i *." (t 9) pt -1)))

(func dump-clips VOID (persist-list point-list)
' (stdmsg -2 "Clippings:" -1 (t 4) "-- persist --*" (¢t 20) "-- point --" -1)
(loop for ((persist in persist-list)
FIXNUM (per-index 1 (+ per-index 1))
POINT (endpt ())
FIXNUN (endbuck ()))
(:= endpt (cadddr persist))
| (:= endbuck (bucket endpt))
(loop for (POINT (pt in point-list))
(cond
({< endbuck (bucket pt})
(stdmsg (t 10) per-index (t 25) (ptindx pt point-list) -1))))))

(func dump-orderings VOID (point-list)
(let (FIXNUM (n (length point-list)))
(stdmsg -2 "Orderings:" -1)
(loop for ((i =1 to n))
(stdtab (* 4 i)) (stddisplay i))
(stdnewline)
(loop for ((i = 1 to n))
(stddisplay i)
(loop for ((j = 1 to n))
(stdtadb (¢ 4 j))

9]
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(stddisplay (ordsym (nthelem i point-list) (nthelem j point-list))))

(stdnevline))))

(func build-persist-list (1lst 0BJ) ()
(let ((res (.))
(for-each-ans (fetch ‘(persist 7tok ?pat ?bp 7ep))
(:= res (cons (list ?tok 7pat 7bp Zep) *-%)))
res))

(proc build-point-list (1st POINT) ()
(let ((pts ())
(n 0))
(for-each-ans (fetch '(bucket ?p ?b))
(:= pts (insert-by-buck ?p 7b *-s)))
(:= pts (<# car *-%))
pts))

; Insert point P with bucket index B into list PTS, maintaining the
; list in ascending order of bucket index. PTS is a list of
; (point . bucket) pairs.

(proc insert-by-buck 0BJ (POINT p FIXNUN b OBJ pts)
{cond ((null pts)
(list (comns p b)))
((¢<= b (cdr (car pts)))
(cons (cons p b) pts))
(t
(cons (car pts) (insert-by-buck p b (cdr pts))))))

(func ordsym SYMBOL (POINT pti ptj)

(cond
((pteq pti ptj) '=)
((<p pti ptj) <)

((=p pti ptj) ‘=)
((=<p pti ptj) ‘'<=)
((<p ptj pti) '>)
((=<p ptj pti) *>=)
(t N

(func flatten (1st POINT) ((lst (lst POINT)) pts)
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(cond
((null pts) 10D}
(t (append (car pts) (flattem (cdr pts))))))

;tt‘#tttt‘ttt‘#t"t#“t‘t“‘##t‘ttttt‘#ttt‘#tt#t*&tttt#ttt‘

; Run a test into a named transcript file

(func make-tscript STRING (STRING filename OBJ test-data)
(let ((str (openo filename))
(std (stdout)))
(stdout-set str)
(run-test test-data)
f (stdout-set std)
*DONE"))

;ttltt"t!Otlttttil“‘ttt‘lt“‘tt"‘tt‘t“‘t‘t‘t‘t“tt‘tt

Test cases

(:= test-1
(list . contradtions
*(((alive ?x) (dead 7x)))
. PCAUSEs
* ((ALWAYS (born 7x) (alive ?x))
(ALWAYS (load ?7g) (loaded 7g))
((loaded 7g) (shoot 7x 7g) (dead 7x))
((alive ?x) (win-sweepstakes 7x) (rich 7x)))
. EVENTs
*((born JORN)
(load GUN)

(shoot JOHN GUN)
(vin-sweepstakes JOHN))))

(make-tscript "pertest.tex" test-1)
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C Program Input and Output

Input

(list
; CONTRADICTIONs
*(((alive ?x) (dead 7x)))

; PCAUSEs
s * (CALWAYS (born 7x) (alive ?x))
(ALWAYS (load 7g) (loaded 7g))
((loaded ?g) (shoot ?x 7g) (dead 7x))
((alive ?x) (win-sweepstakes ?x) (rich ?x)))
; EVENTs
*((born JOHN)
(load GUN)

(shoot JOHN GUN)
(vin-sveepstakes JOHN)))
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Output

Pcauses:
PC-5 (alive 73)
(vin-sweepstakes ?73)
(rich 73)
PC-4 (loaded 75)
(shoot 74 75)
(dead 74)
PC-3 ALWAYS
(load 76)
(loaded ?6)
PC-2 ALWAYS
{born ?7)
(alive ?77)

Contradictions:
(alive 78) (dead 78)

Events:

EVI-4 (win-sweepstakes JOHN)
PEVT-4

EVT-3 (shoot JOHN GUN)
PEVT-3

EVT-2  (load GUN)
PEVT-2

EVI-1 (born JOHN)
PEVT-1

Persistences:
1. PTA
ALWAYS
PBA
PEA
2. (pt PC-4 EVT-3 (pt PC-3 EVI-2 PIA))
(dead JOHN)
(pb PC-4 EVT-3 (pt PC-3 EVT-2 PIA))
(pe PC-4 EVI-3 (pt PC-3 EVI-2 PIA))
3. (pt PC-3 EVI-2 PTA)
(loaded GUN)
(pb PC-3 EVI-2 PTA)
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(pe PC-3 EVT-2 PTA)
4. (pt PC~2 EVI-1 PTA)

(alive JOHN)

(pb PC-2 EVT-1 PTA)

(pe PC-2 EVI-1 PTA)

Points:

PBA

PEVT-1

(pb PC-2 EVI~1 PIA)

PEVT-2

(pb PC-3 EVT-2 PTA)

(pe PC-2 EVT~1 PIA)

PEVT-3

(pb PC-4 EVI~-3 (pt PC-3 EVI-2 PTA))
9. PEVT-4

10. PEA

11. (pe PC-3 EVT-2 PTA)

12. (pe PC-4 EVT-3 (pt PC-3 EVT-2 PTA))

W QDO b WN -

Clippings:
-- persist -- -- point --
4 7

8
9
10
11
12

L N
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D Inductive Description of Algorithm Output.

Herein we describe the program as a series of stages, the i'* stage representing the program’s
state after adding the i** event to its database. The description is a set of rules, one for
each of the relations corresponding to the temporal predicates, along with rules specifying

what changes to the relation are allowed in transition from the i** to the i+1* stage.

Since the description is inductive in the number of events, each relation name will be
subscripted by an event index. The relation clipped,, for example, represents the program’s
representation of the relation clipped after i events have been processed. Assuming there

are n such events, the program’s output is described by pcause,, persist,, =,, etc.

We must therefore demonstrate that the description actually does characterize the pro-

gram correctly. To this end we must show three things for each relation R:

1. that the initial contents of R in the program is the same as the description’s contents
of K at stage 0,

2. that the individuals aaded or deleted by the program in adding the i+1* event are
the same as described for the transition between the description’s i** and i+1* stages
for that relation, and

3. that these initial and transitional additions and deletions are the only changes made
by the program to that relation. (In other words we have to verify that the last item
in each relation description, which says “no others”, is indeed true.)

D.1 Notation

We will use the following notational shorthand:

1. If R is a relation, then 7 € Ri41\i stands for 7 € (Ri41\Ri). In terms of the program,
this means “Z is added to relation R in the process of adding the i+1*' event.”

98




2. Saying “the end point of tok is pe”, abbreviates “for some i, pat and pb: (tok, pat, pb, pe)
€ persist,”. The same holds for the begin point of a token.

3. Saying “tok is first clipped at stage i means that there is some p € point; such
that (tok, p) € clipped,, and that for any y < s there is no point p’ such that
(tok, p') € clipped;.

D.2 Input relations

Input to the program will be represented here as three sets, for pcauses, contradictions,

and events:

1. The set EVT is the set corresponding to the event axioms in P. It is a set of n triples,
each of the form (evt-tok,, evt-pat,, pevt;). All evt-pat; are closed wfls.

2. The set PC corresponds to pcause axioms. These are tuples of the form (pc-tok;,
pc-ofact-pat(z), pc-evt-pat(Z), pc-nfact-pat(z)), where pc-ofact-pat, pc-

evt-pat, and pc-nfact-pat are terms free in the variables z.
3. The set_ CONTRA corresponds to contradict axioms. These are pairs of the form
(pat1(z), pat2(z)), where pat1 and pat2 are terms free in the variables z. e

The program stores event, pcause, and contradict assertions explicitly in the DUCK

database. Furthermore, for the latier two relations these assertions are added at initializa-

tion and individuals are neither added nor deleted thereafter. Therefore we can describe

pcause and contradict as follows:

D.2.1 Definition of pcause
1. if (pc-tok, pc-ofact-pat, pc-event-pat, pc-nfact-pat) € PC .
then (pc-tok, pc-ofact-pat, pc-event-pat, pc-nfact-pat) € pcause; (1 =0,...,n). -
2. no others ¢
(




D.2.2 Definition of contradict

1. if (patl, pat2) € CONTRA
then (patl, pat2) € comtradict; (s=0,...,n).

2. no others

D.2.8 Definition of event

The definition of event is similar, but recall that the i** event assertion is added at the

description’s i** stage.

—

evently = ¢

2. event; C eventy,

3. (evt-tok,y;, evi-paty;., pevt,y;) € evemt,
4

. no others

D.3 The persist relation

Persistences are stored as DUCK assertions of the form (persist tok pat bpoint epoint).
We thus need to examine where in the code 8 DUCK ADD operation of this form takes place.

There are two such places: in the function init, where the ALWAYS persistence is added,

and in the function add-persist. Here is the inductive definition of persist (the relation

unclipped-toks is defined on page 103):

D.3.1 Definition of persist ',__41

1. persisto = {(PTA, ALWAYS, PBA, PEA)} g 1

2. persist; C persist,,, . J
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3. if (pc-tok, pc-ofact-pat, pc-evt-pat, pc-nfact-pat) € PC
and there's a token ofact-tok with pattern ofact-pat,
and a substitution o such that (pc-evt-pat)o = evt-pat,y,,
and (pc-otfact-pat)o = ofact-pat,
and ofact-tok € unclipped-toks;
then (pt(pc-tok, evt-tok;s;., ofact-tok),
(nfact-pat)o,
pb{pc-tok, evt-tok,;. ofact-tok),
pe(pc-tok, evt-tokiy;, ofact-tok)) € persistyy\;.

4. no others

Items 1 and 2 are straightforward: the ALWAYS tuple is added only once at initialization,
and persist assertions are pever retracted. It remains to show that item 3 corresponds to
exactly those circumstances under which the function add-persist is called, and that the

form of the persist assertion added agrees in form with that of the tuple added in item 3.

Note in the code that add-persist is called by persist-cause-persist and by event-
cause-persist under similar circumstances: in each case the DUCK database is asked if
there are pcause, event, and persist assertions corresponding to the first three precondi-
tions of item 3. If there are, the program calls add-persist if the call to (boolean) function
(in-interval pevt,,, ofact-bp ofact-ep) returns true—we have to verify that this will
be the case exactly when the persistence named by ofact-tok is in the relation unclipped-

toks;.
The function in-interval in this case abbreviates the conjunction

(and (X ofact-bp pevt;y;)
(< pevtiy; ofact-ep).

The first conjunct is immediately verified: because the current event is added to new (later)
buckets than any previous points, it’s the case that for any persistence in persist;4;. either
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(< bp pevt;41) or {(~ bp pevt,,;). So in either case (X bp pevt,,;). Also note that
if ofact-tok € unclipped-toks,,; then (<X pevt;y; ofact-ep) directly by item 4 of the

definition for <.

It remains to show that if (X pevt,;, ofact-ep) then ofact-tok € unclipped-toks;.
Assume ofact-tok ¢ unclipped-toks,, so by definition (ofact-tok, p) € clipped,,, for
some p. But by definition of <, it then follows that (ofact-ep, pevt,,;) € <;4;. It is

impossible, given the definition of < and =<, for (X pevt,;;;, ofact-ep) to be true as well.

D.4 Point-defining relations

The program represents “pointhood™ implicitly. Anything that has a bucket assertion is

considered to be a point: sall event points and persistence begin and end points.

D.4.1 Definition of point
1. posnty = {PBA. PEA}
2. posnt, C posnt,,,

3. pevrt,,; € point, )\,

4. if (tt, pat, pb. pe) € persist,
then pb € point,+,\,~
and pe € point, \;

5. no others

For verification we need look at the places in the program where add-point is called: at
initialization time to put PBA and PEA in buckets, and from add-event to add the current

event point. and from add-persist to add the begin and end points of a newly-created

102

PR SRV R T vy




[t St B e e e eI ey T "y e 2 — ——" - - e -r T
E R T T T T W T VR T s VR v IwT~s

persistence. These cases correspond exactly to the items above.*

D.5 Clipping relations

Recall that clipping is represented indirectly—a persistence tok is clipped by a point {(ac-
cording to the program) just in case the end point of tok is in a bucket with a lower index
than that of p. Note in the code that when a persistence is added to the database its end
point is put in the “unclipped” bucket (the bucket with index 2n + 1). Since this bucket
has the highest possible index, persistences are at first unclipp=d by any point. Points are
moved out of this bucket by the function delete-point, which is called only by persist-

clip-persist.

The relations clipped-toks, unclipped-toks, and unclipped-endpoints are intro-
duced just {or notational convenience. Respectively they are the set of all tokens naming
persistences clipped (by any point) at the i*# stage or before, those unclipped by any point

as of the i** stage, and the end points of those tokens in unclipped-toks.

D.5.1 Definition of clipped-toks

1. if there is a point p such that (tok, p) € clipped,,,
then tok € clipped-toks,;;

D.5.2 Definition of unclipped-toks

1. if there is no point p such that (tok, p) € clippediy;
then tok € unclipped-toks;y

“It’s alsc the case that add-point is called when a persistence is clipped—but the same point is first deleted

from a bucket then added to a different one, so no new point is created.
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D.5.8 Definition of unclipped-endpoints

1. if tok € unclipped-toks;,
and pe is the end point of tok
then pe € unclipped-toks,4)

Note that the points in unclipped-endpoints;4, are exactly those points in bucket 2n+1.

i
D.5.4 Definition of clipped
1. clippedy = o

X 2. clipped; C clspped, ., ,
l', 3. if tok;., asserting pat; € unclipped-toks;

and there’s a lok: € persist,,,,; asserting a pat

and patterns (cpat;, cpat:) € comtradictiy;

and 2 substitution o such that
i (cpat,)o = pat, and (cpaty)o = pat,

and pb: is the begin point of tok: "
then (tok;, pbz) € clippedy )\

4. if p € (point,y,\; U unclipped—endpoints;)
and p is not the endpoint of a persistence clipped by item 3 above

| and tok € clipped; o
or tok was clipped by itex 3 above
then (tok, p) € clipped,yy\;- i
5. no others. .t}'.'}' ]

Item 1 is true because the ALWAYS persistence is the only persistence initially; its endpoint

is put in the “unclipped™ bucket. hence the token is unclipped.

ftem 2 is true because once a persistence endpoint is move into a bucket other than
bucket 2n + 1. no point can be moved into a bucket with a smaller index. (Add-point can
put points only into the current event bucket, the “clipped” bucket for the current event,

and the persist bucke:.) .

104

T > . - - . - . . - . —'.-' .‘\." -.' ..‘ -~ -.' --‘ -.' --'-.' ..‘.A --
[P PECP, PP PN P PR . [T IPS WS PGS LN LN VS, Vs e




Syt A it A S it i At Syt e e e At S A MO RSO M DO A ST I AEcE A S TR B Bath S S

Item 3: a “first clipping” at the i+1* stage is handled by persist-clip-persist, and
is similar to the persistence-causing situation we saw in defining persist above. As was
the case with persist, the DUCK unification algorithm assures us of all the preconditions,
except that we have to verify that tok, € unclipped-toks, is equivalent to the program’s
condition (in-interval pb. pb, pe;). First of all, it must be the ca:' that (< pb; pb.)
since toks was created at the i+1* stage. Furthermore, since tok; is in unclipped-toks,,
pe; is in bucket 2n + 1 as of the i+1* stage, thus has a bucket index greater than that of
pb;, and (= pb; pe;).’

Item 4: the set of points p described in item 4 are those points whose bucket index equal
21 + 2 (1.e.. current event point and begin points of persistences caused at stage 1 + 1),
or whose index is 2n + 1 (the endpoints of persistences unclipped as of the end of the i**

stage). The set of tokens tok are exactly whose endpoints are in buckets 25 + 1 (clipped

at the i+1°" stage) or prior (clipped prior to the i+1* stage). This is exactly the set of
points p and token endpoints pe such that the index of p is greater than the index of pe.

Bv definition of clipped, these are the clipped tokens and the points that clip them.

D.6 Point-ordering relations

Our definition of the point-ordering relations will depart somewhat from the strictly induc- 4
tive approach we bave taken so far. The program computes point orderings by making an

assertion of the form (bucket p n) for each point p, where n is a nonnegative integer, then

computing point ordering based on points’ respective bucket indices. We will do likewise:

5]t may be the case that two tokens satisfy the preconditions for clipping a particular persistence. The
program will choose one arbitrarily, and clip it according to the rules in item 3. The begin point of the

other token will also clip it, but by item 4 instead.
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first we provide an inductive definition of the relation bucket, then an algorithm to compute

point orderings on the basis of the contents of that relation.

D.6.1 Definition of bucket
1. bucketo = {(PBA, 0), (PEA, 2n+1)}
2. (pevt;, 2i) € bucket;

3. if tok is a persistence created at stage i
and pb igs the begin point of tok,
and pe is the end point of tok,
then (pb, 2i) € bucket;
and (pe, 2n+1) € bucket,

4. if tok is first clipped at the stage i,
and pe is the end point of tok
then (pe, 2i-1) € bucket;

$. otherwise, if p € point,;,
and p is not the endpoint of a persistence first clipped at stage i
and (p., n) € bucket,_,
then (p, n) € bucket;

Item 1 is satisfied through function init; for items 2, 3, and 4, the program uses the
variable eventno®*, which is initialized to 0 and incremented by 2 every time an event is
added. The current event point and new persistence begin points are added to bucket
eventno®. and persistences .clipped by that point are added to bucket (eventnos —1). Item
4 is verified by noting that bucket assertions are deleted only when a persistence is clipped,
and this is the case of item 4. ltem 5: bucket assertions are retracted only when a “first

clipping” takes place (item 4). Otherwise assertions endure from stage to stage.

The first thing to notice about the definition of buckets is that every point is assigned

exactly one bucket: at the 0** stage the only two points (PBA and PEA) are both assigned
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buckets, and all points created at the i+1* stage are assigned buckets either by item 2 or
item 3. If p is an event point or a persistence begin point, the bucket index it receives on

creation (which is 21 if it’s created at the i** stage) will be the index it has at the n** stage

A Y Y v w v -
PR AR

(which is just to say that event and begin points are never relocated). The bucket indices

of event points and persistence begin points will never change; the index of a persistence

; endpoint will change at most once, if and when it is first clipped.

. The buckets “accessible” at the i*# stage (i.c. the indices into which points can be put
at that stage) are limited to 21 (the current event bucket), 25 — 1 (the bucket for newly
clipped persistence endpoints), a.nci 2n + 1 (for unclipped persistence endpoints). So bucket
positions established at previous stages cannot be changed (except for persistences that
bave been clipped). That is, at stage s the program cannot put points into, or take points
out of, buckets prior to 21 — 1, thus cannot affect point-ordering relationships based on

buckets with lower indices).

The ordering relations between pairs of points depend only on the points’ respective
bucket indices. Here are definitions for the point-ordering relations, assuming points p; and

p- both are in point,, and have bucket indices b; and b, respectively:

D.6.2 Definition of ~

1. (p1, p2) € ~; if py=p2, or if b, = b> and b; and b. are even.

This can be verified directly in the code, function =p.

D.6.8 Definition of < . ]
1. (py, p2) € =, just in case b, < by, T

107

ASal alia el At




L e e T R e e R o S D v errw PO gns ow i g

The function is < p.

D.6.4 Definition of <

1. {(py. p2) € =%; just in case b; < b,,

The function is =< p.

It’s easy to verify certain properties of the orderings so defined—transitivity of all three
relations, that < = =<, that substituting ~ points preserves ~, <, and =< relations, etc. We

defer these proofs to appendix E.
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E Proof that Program Models the Temporal Axioms

We prove here that the structure produced by the temporal program (represented by the

relations event,, persist,, ~q, etc.) is a model of the axioms (T U P).

As far as the problem axioms (P) go, we noted that every (pcause, contradict, and event)

assertion in P is input to the program and is reflected unchanged in the output. Our -
restrictions also require that P have a set of < assertions ordering the event points evt-pt;.
The order is reflected in the program’s assumption that the events are input in temporal
order: therefore by clause 2 of the definition of bucket and of <, (PEVI;, PEVT;) € <, iff ,

1£1<j3<n.

The axioms in T, we noted, were implications (except for those concerning ALWAYS). We R
prove, by induction on ¢ (event index), that all are true of the program’s output. To do so

we demonstrate that they’re all true initially, then assume that they’re true for the i** stage s

and that all their antecedents hold at the i+1* stage, then we show that the consequents

for all axioms must be true at the i+1°' stage.

E.1 Point-ordering axioms

The point-ordering axioms (numbers 10-15) we can verify more directly. The ordering ae
relations between any two points depends only on their respective bucket indices. As we
saw in the definition of bucket, every element of point has exactly one index, which is T
an integer in the range [0, ..., 2n + 1]. We can thus use certain properties of the integers "'

(e.g. transitivity) to verify the ordering axioms. The defining rules for these relations are

in section D.6, on page 105. The point ordering axioms themselves begin on page 78 of AN
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appendix A. We assume that there are individuals p,. p2, and ps, all of which are members

of point,. and that they have bucket indices b,. ba, and bz, respectively.

Axiom 10a (~ is reflexive): is true by definition of ~. -
O
Axiom 10b (~ is symmetric): is true by symmetry of equality over the integers. X

Axiom 10¢ {~ is transitive): is true by tranmsitivity of equality over the integers.

Axiom 1la (< is non-reflexive): b, £ by, so (p;, p;) & =<n
Axiom 11b (=< is antisymmetric): true by antisymmetry of < over the integers.

Axiom 1llc (= is transitive): true by transitivity of < over the integers. - '};

Axiom 12a (< is transitive): true by transitivity of < over the integers. {':j. =
Axiom 12b (transitivity for < and =): true by transitivity of < and < over the integers. ‘ ::::-:jf_:
Axiom 12¢ (transitivity for < and <): true by transitivity of < and < over the integers. L
Axiom 13a (~ = =x): because b, = b; = b, < b,.

Axiom 13b (< = =x): because b; < by = b; < bs. .
Axiom 14a (~ incompatible with converse <): if (p1, p2) € ~n then b; = b;. Thus b2 £ b, ,‘
and (3, p1) & <n R
Axiom 14b (= incompatible with converse <): if (py, p2) € <n then b; < b,. Thus bs £ b,, R

and (p2, p1) € <a

110

I S S S T T LTS RIS e e e e e T e e T R R R
R R T P e TRl e T R T N P S el I IR R T T .
L aae e tatats Catatatalatataial e i acai et alad ol dnd el adededebedede fodeedee deodedee Abedasietiniabegi




Axiom 15a-d (substituting ~ points preserves < and = relations): all four of these axioms
follow from the fact that if b; = b2, substituting b, for by preserves relations < and < over

the integers.

E.2 Clipping and point ordering—axioms 5-7

It’s convenient to verify directly the validity of axioms relating persistences and clippings

to relevant point orderings (axioms 5, 6, and 7).

Axiom 5 (clipping = <)°:

if (1) (persist; tok pat bp ep)
and (2) (clipped; tok p3)
then (<, ep p2)

Recall that the program reports that (tok, p;) € clipped; just in case tok € persist;,
and p2 € point;, and the bucket index of p3, which is bz, is greater than the bucket index
of tok’s end point, which is (b;). But then from the definition of < it immediately follows

that (<; ep p2).

Axiom 6 (unclipped persistences endure):

if (1) (persist; fact-tok fact-pat fact-bp fact-ep)
and (2) (point; p)

and (3) (fact-tok, p) & clipped;

then (=; p fact-ep)

®Note that for any relation £, we use “(R; Z)" to abbreviate “z € R,”.

v S Vo B Vil M g0 B Sepi i S o P S Hite i e Pis S M A MEA el B R b - e e har ke~ o0 o et At

L4

gr .
LT

;.- oe

Te e

N
"’
P

....

ORI o
|
“w

LAl ST
RO F I

.
AN

v
AR

g T e e e e e Tt et e e N T T T T T
....... PP P T i Nt e L S LA SO TS
e s Py P R P G Wl VT PR O SR AR RS S WP RS S W R WG T WY W VR P W R - S PP P T e et dientetd




R T —m———mp—— Pt S X S S Sl b iy Tty “h Ry “pde AR S Sblie Sl Mt SR taiubtnf iin1

e W e L

-

Conversely, if fact-tok is a persistence at the i** stage and p is a point at the i*» stage, the
program will report that p does not clip fact-tok just in case the bucket of p is no greater

than the bucket index of fact-ep. By definition, then, (p, fact-ep) € ;.

Axiom 7 (begin point comes before end point):
' if (persist; tok pat p; p2) -jﬁ_j-_.;
& then (<; p1 p2) ceed

[ Let 5 < n be the stage at which tok was created, and b, and bz be the bucket indices of p;
and p;. Initially b; = 2y and b2 = (2n + 1). Due to restrictions on the problem axioms, tok

cannot be clipped at the j*» stage, so at the end of the j*» stage the inequality b; < b, holds,

and (p;, p2) € <;. Tok's begin point, p1, will stay in bucket 2; through all subsequent
stages. If tok is never clipped, p; will stay in bucket 2n + 1 as well, and the inequality
holds thereafter. If tok is clipped, say at stage & > 7, p»’s index becomes (2k — 1} at that

stage and thereafter. But since (2k — 1) > 25 the inequality still holds. So it’s always the

case that (b, < bz}, thus for every stage ¢, (<; p1 p2)-

Now we proceed with the inductive proof for axioms 1-4 and 8. We start by proving the

base case—that each axiom is true at stage 0.

E.3 Base case —

Axiom 1 (creating a new persistence): Since eventg is empty, the precondition can never

hold, and no persistences can be generated by this axiom at the 0** stage. o

Axiom 28 (ALWAY'S token): The ALWAYS token, with begin and end points PBA and PEA, is

explicitly in persisty. S
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Axiom 2b. The only points in pointy are PBA and PEA. The first instance of the axiom
is satisfied, since (= PBA PBA), and since PBA is in bucket 0 and PEA is initially in bucket
2n + 1, (<o PBA PEA) by definition.

Axiom 2c. Since ¢lippedyp is empty, this axiom is true.

Axiom 3 (direct clipping): The ALWAYS token is the only one in persisto, and by restriction
on P there can be no pattern contradictory to ALWAYS. So the antecedent for this axiom

will not be true at the 0°* stage.
Axiom 4 (indirect clipping): Clipped, is empty, so the antecedent can’t be true. .

Axiom 8a (persistence endpoints are points): True directly by definition of persist, and
pointop.
Axiom 8b (event points are points): Eventp is empty, so the antecedent can’t be true at

the 0'f stage.

E.4 Induction step

We assume that all the axioms are true at the i** stage, and go on to verify that they’re

true at the i+1°*.
Axiom 1:

if (1) (pcause;;; pc-tok ofact-pat evt-pat nfact-pat)
and (2) (persist,;; ofact-tok ofact-pat ofact-bp ofact-ep)
and (3) (event;,; evt-tok evt-pat PEVT)
and (4) (=;4; ofact-bp PEVT)
and (5) (=,4; PEVT ofact-ep)
then verify that

(persist,,,

pt(pc-tok, evt-tok, ofact-tok)

M

e v g ¥V s v v, v, ., v
R . .

(3
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cfact-pat o
pb{pc-tok, evt-tok, ofact-tok) ;.j-;_‘-:
pe(pc-tok, evt-tok, ofact-tok)) PN
and that
(~i41 .

pb(pc-tok, evt-tok, ofact-tok)
pe(pc-tok, evt-tok, ofact-tok))

As we saw in section 5.2 the proof involves an analysis of cases—for each of the five
relations in the preconditions, we split on the case that the tuple was added at the i+1*
stage, or was added at the i stage or before. While there are thus 32 possible cases to
be verified for this example, we can eliminate most of them straight off. There’s no point '
in splitting cases for clause (1), for example, because as far as the program is concerned,

prousey = peouse; = ... = Pcouse,.

Next consider clauses (4) and (5): (4) involves a point-ordering relation over event and ..
persistence begin points, and a look at the definition of bucket shows that once the bucket
indices of event and begin points are fixed they are never changed, so the order of these
points can’t change from stage to stage either. As far as clause (5), if a persistence end ~—
point is ever ordered by the program to fall after an event point, it will always be ordered '
after that event point. (It could be clipped at some later stage, but only by a subseguent
event.) So the original orderings imposed on the points in clauses (4) and (5) are all that

matter, and we don’t have to split those cases.
1Y

Finally, since we know exactly what event assertions are added at each stage, we know
that if the particular event tuple named in clause (3) were added at the i+1*stage, then -

it must be the triple (tok-evt,,;, pat-evt,,;. pt-evt.,;).

So it looks like we have to consider only these four cases:
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1. both the persist and the event tuples (hereafter abbreviated by their token names,

ofact-tok and evt-tok), were added at or before the i*stage
2. evt-tok is the i**event, or one previous, but ofact~tok was added at the j+1* stage
3. ofact-tok was added at the i*» stage or before, and evt-tok names the i+1°* event

4. both the ofact-tok and evt-tok were added at the i+1*stage

The first case is handled by the induction hypothesis. The second case is impossible—
assume that ofact-tok is created at the i+1* stage and that evt-tok is the j'* event for

7 <. Then (<4, pevt; ofact-bp), and precondition (4) is thus impossible.

Next cases 3 and 4. If we assume preconditions (1) through (3) along with the restrictions
of the third case (that ofact-tok was there at the i stage and evt-tok is the i+1% event),
precondition (4) follows as well, because (<4, ofact-bp PEVT;4,). Case 4 satisfies this
precondition too. because (~;4+; ofact-bp PEVT;4;) when ofact-tok comes into being at
the i+1* stage. In both cases we have to verify that the appropriate persistence will be
added at stage s + 1. Looking at the definition of persist (page 100}, our task reduces to

showing that (=;,; cfact-bp pevt) = ofact-tok € unclipped-toks,.

Assume to the contrary that ofact-tok ¢ unclipped-toks,—in other words, it is
clipped as of the i** stage. There is therefore a stage j < ¢ at which ofact-tok is first
clipped, and the bucket index of ofact-epis 2y — 1. The bucket index of Pm;+1 is 20 +2
in both case 3 and case 4, and (25 ~ 1) < (21 + 2) since 5 < i. Therefore (<,4; ofact-

ep PEVT), and it’s impossible that (<,4,; ofact-bp PEVT).

Thankfully. proofs of the remaining axioms are somewhat less tedious:

115

...............

...............
MY . R ""-',‘.-"-'ﬂ- .-'-.'
LU LW SO WD S Sl Vol Uyl Yl T VS S S Ty

S L




LRARANAS AL YR atPri Sk, St oA Sk S Al bul e EXLARA i i v P o A M 0 A g S A A A S S e A e

.......

Axioms 2a and b:

if (1) (point,y, p)
: then either
I (= p PBA)

or ('<.‘+1 PBA P)

it (1) (point;y; p)

i then (PTA, p) & clipped,y:.
Recall that we're assuming the i*% stage true, so we’re only interested in those points in
A point; ;. All points added at that stage will be given either bucket index 21, or 2n+1—in
{
) either case this is larger than 0, so the < relation holds. For the second axiom, & token can
be clipped at the i+1°stage (item 4 in the definition of clipped) only if there’s another
. persistence asserting a pattern contradictory to that token’s. But we specifically prohibit
|
' any pattern be contradictory to ALWAYS, so the PTA token can’t be clipped at the i+1*
stage.
i Axiom 3:
it (1) (persist;,; fact-tok fact-pat fact-bp fact-ep) - w
and (2) (persist;,; clip-tok clip-pat clip-bp clip-ep) T
and (3) (contradict.y; fact-pat clip-pat) L]
and (4) (=<;4; fact-bp clip-bp) S
) then (clipped,;; fact-tok clip-bp) va—_-r.-’
As we did in verifying the persistence axiom, we can ignore splitting cases on contradict L
) and <, and consider the following four:
1. both fact-tok and clip-tok existed at the i*h stage
'. 2. fact-tok existed at the i** stage, but clip-tok was created at the i+1*' stage
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3. clip-tok existed at the i** stage, but fact-tok was created at the i+1* stage

4. both fact-tok and clip-tok were created at the i+1% stage.

Case 1 is covered by the induction hypothesis. Cases 3 and 4 fail on precondition (4):

for case 3 we have (=< clip-bp fact-bp) and for case 4 we have (~ clip-bp fact-bp),

so in either case precondition (4) cannot hold. We’re left then with case 2 {and note that

precondition (4) is satisfied).

For case 2, all antecedents are satisfied. It’s either the case that fact-tok € unclipped-
toks;s;. or that fact~tok € clipped-toks,;. If the former holds then item 4 of clipped
applies, and by that rule, (fact-tok, clip-bp) € clipped;;;, and the consequent is true.
Assume instead that fact-tok € clipped-toks,,;. and that clip-bp € point ;- In
this case item 3 of the definition for clipped is satisfied, and (fact-tok, clip-bp) €

clipped,,,. Again the axiom’s consequent is satisfied.

Axiom 4:

it (1) (persist,,; fact-tok fact-pat fact-bp fact-ep)
(2) (clipped;,, fact-tok p1)
(3) (pointy4y p2)
(4) (Zi41 P p2)

then (clipped,,; fact-tok ps)

Let j be the stage at which fact-tok was created, let k£ be the stage at which p, first
clips fact-tok. and let [ be the stage at which p, becomes a point. If 5, &, and ! are all <
i. then the induction hypothesis applies. Consider. then, cases where at least one of them
= 14+ 1. Note further that it must be that £ > 5 (because a fact can’t be clipped before or

at the same stage it’s created), and | 2 k, because otherwise precondition (4) would fail.

So that leaves us with two cases:
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1. fact-tok created at stage 5 < k, clipped by p; at stage k < ¢+ 1, and p; becomes a

point at stage [ =1§ +1

2. fact-tok created at stage 5 < k, clipped by p; at stage k = i + 1, and pz becomes a

point at stage [ =s+1.

In either case fact-tok € clipped-toks,;, and in either case p; € point ;. So in

either case item 3 in the definition of c1ipped applies, and (fact-tok, p2) € clipped,,)\;-

Axiom 8:

if (1) (persist,4; tok pat p; p2)
then (point py)

if (1) (persist,4: tok pat p pz)
then (point p2)

if (1) (event,,; tok pat p;)

then (point py)

In all three cases, if the (single) antecedent is true at the ith stage then the induction
hypothesis holds. If tok is a persistence created at the i+1* stage, or if tok names the
i+17" event then the respective consequents are true by items 4 and 3 respectively. in the

definition of point.
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